Потенциал электростатического поля между обкладками конденсатора при перемещении от положительной
Перейти к содержимому

Потенциал электростатического поля между обкладками конденсатора при перемещении от положительной

  • автор:

Работа по перемещению заряда в электростатическом поле. Потенциал. Разность потенциалов. Связь напряженности с разностью потенциалов.

Презентация к уроку в 10-ом классе по новой программе для урока по теме: » Работа по перемещению заряда в электростатическом поле. Потенциал. Разность потенциалов. Связь напряженности с разностью потенциалов. «. Материал создан согласно программе по физике под руководством Локтева В. М. , уровень стандарта.

Перегляд файлу

Учитель физики высшей категории. Яковлев Юрий Яковлевич1 Одесская специализированная общеобразовательная школа І-ІІІ ступеней № 40, Одесского городского совета, Одесской области Работа по перемещению заряда в электростатическом поле. Потенциал. Разность потенциалов. Связь напряженности с разностью потенциалов.

�� ��=����cos�� Работа в механике:��=������cos�� Работа в электростатике:��=���� �� ��=������ 2

�� ��=������cos�� Работа в электростатике:�� ��=��cos�� �� �� ��=������ 3

�� �� ��=������ Работа при перемещении заряда не зависит от траектории!��=−∆�� ��=������ 4

Потенциальная энергия в электрическом поле. Потенциальная энергия в гравитационном поле��=������ ��п=����h �� h 5

∆��=0⇒��=0 Работа электростатического поля на замкнутой траектории равна нулю: Энергетическая характеристика электрического поля называется потенциалом.6

��=���� Потенциал точки электростатического поля — это отношение потенциальной энергии заряда, помещенного в данную точку, к величине этого заряда: =��������=���� ��,�� �� = Дж. Кл = В 7

Разность потенциалов��=����⇒��=−��∆�� ��1−��2= ���� U= ���� Разность потенциалов (напряжение) — это отношение работы электрического поля при перемещении заряда к величине этого заряда.��1 ��2 8

Характеристики электрического поля</p>
<p>Характеристики электрического поля. Напряженность (силовая)Потенциал (энергетическая)��=������=����Характеристики электрического поля. Напряженность (силовая)Потенциал (энергетическая)��=������ A=q. U ������=����⇒��=���� 9″ /></p>
<p><img decoding=

Эквипотенциальные поверхности�� ��=����1−��2 Эквипотенциальная поверхность — поверхность, все точки которой обладают одинаковым потенциалом.��=���� ��=0⇒∆��=0 ��1 ��2 ��3 ���� ���� ���� 11

�� Эквипотенциальные поверхности. Поверхность любого проводника в электростатическом поле является эквипотенциальной, поскольку все линии напряженности перпендикулярны поверхности проводника. Все точки внутри проводника обладают одинаковым потенциалом, поскольку напряженность поля внутри проводника равна нулю.12

Скорость протона, который движется в однородном электростатическом поле, увеличилась от ��×������ м/с до ��×������ м/с. Найдите разность потенциалов между начальной и конечной точками перемещения протона. �� �� Дано: ∆�� − ? ��1=2×104 м/с ��2=3×104 м/с 2×104 м/с 3×104 м/с ����=1,6×10−19 Кл ����=1,67×10−27 кг ∆��к=��2��22−��12 ∆��=−∆��к ��=−∆��=∆��к ��=����=��∆��⇒ ∆��=∆��к��=����2������22−��12=2,6 В ∆��к=��∆�� 15

Связь между напряженностью и разностью потенциалов в однородном электростатическом поле:��=����Эквипотенциальные поверхности — это поверхности, каждая точка которых обладает одинаковым потенциалом. Поверхность любого проводника является эквипотенциальной. Основные выводы16

Основные выводы�� ��1 ��2 ��3 ���� ���� ���� 17

Точечный заряд, равный 400 мк. Кл переместился из одной точки в другую, потенциал в которой ниже на 2 В. Найдите работу, совершенную электрическим полем, а также изменение потенциальной и кинетической энергии. Считать поле однородным. Дано: ��, ∆��,∆��к − ? ��=400 мк. Кл ∆��=−2 В 400 мк. Кл −2 В ��1 ��2 ��=���� ∆��=��∆�� ∆��=−800 мк. Дж ��=−∆��=800 мк. Дж ∆��к+∆��=0⇒ ∆��к=800 мк. Дж 18

Пылинка, обладающая зарядом 120 н. Кл, висит в однородном электростатическом поле между разноименно заряженными пластинами. Если масса пылинки равна 18 мг, то каково напряжение между пластинами? Расстояние между пластинами составляет 6 мм. Дано: �� − ? ��=120 н. Кл ��=18 мг 120 н. Кл ��=6 мм 18 мг 6 мм СИ1,2×10−7 Кл 1,8×10−5 кг 6×10−3 м ��=��2−��1 ��2 ��1 �� ��=���� ���� ��к ����=���� ��=������ ��=�������� ��=1,8×10−5×9,8×6×10−31,2×10−7≈8,8 В 19

Основные выводы. Работа поля при перемещении заряда не зависит от траектории движения заряда. Потенциальная энергия заряда в данной точке поля:��=������Потенциал точки электростатического поля — это отношение потенциальной энергии заряда, помещенного в данную точку, к величине этого заряда:��=����=���� 20

Электрическое напряжение между двумя точками — это отношение работы поля при перемещении положительного заряда из начальной точки в конечную, к величине этого заряда:��=∆��=���� Основные выводы</p>
<p>Характеристики электрического поля. Напряженность (силовая)Потенциал (энергетическая)��=������=����Характеристики электрического поля. Напряженность (силовая)Потенциал (энергетическая)21″ /></p>
<p><img decoding=

23 Физика и труд. Всё перетрут!

Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше: →

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: — Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Вектор напряженности направлен в сторону уменьшения потенциала

Эквипотенциальные поверхности.

ЭПП — поверхности равного потенциала.

— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Измерение электрического напряжения (разности потенциалов)

Потенциальная энергия взаимодействия зарядов.

Потенциальная энергия взаимодействия зарядов

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

Электрическое поле. Электростатика

Две параллельные металлические пластины больших размеров расположены на расстоянии \(d\) друг от друга и подключены к источнику постоянного напряжения (рис. 1). Пластины закрепили на изолирующих подставках и спустя длительное время отключили от источника (рис. 2).

Из приведённого ниже списка выберите два правильных утверждения.
1) Напряжённость электрического поля в точке А больше, чем в точке В.
2) Потенциал электрического поля в точке А больше, чем в точке С.
3) Если увеличить расстояние между пластинами \(d\) , то напряжённость электрического поля в точке С не изменится.
4) Если уменьшить расстояние между пластинами \(d\) , то заряд правой пластины не изменится.
5) Если пластины полностью погрузить в керосин, то энергия электрического поля конденсатора останется неизменной.

После того как длительное время пластины были подключены к источнику постоянного напряжения, они зарядились: левая пластина отрицательно, правая – положительно.
1) \(\color>\) плоского заряженного конденсатора электрическое поле однородно. Напряжённости поля в точках А и В одинаковые.
2) \(\color>\) Потенциал электрического поля внутри конденсатора убывает от положительной пластины к отрицательной. Потенциал электрического поля в точке А меньше, чем в точке С.
3) \(\color>\) Поскольку пластины отключены от источника, то заряд и его поверхностная плотность на них не меняется при изменении расстояния. Значит, не будет изменяться и напряжённость электрического поля между пластинами.
4) \(\color>\) Заряд пластин остаётся постоянным, независимо от того, сдвигают пластины или нет.
5) \(\color>\) Диэлектрическая проницаемость керосина больше 1. При полном погружении в керосин энергия электрического поля конденсатора уменьшится.

Задание 2 #15999

Однородное электростатическое поле создано равномерно заряженной горизонтальной пластиной. Линии напряженности поля направлены вертикально вверх (см. рисунок).

Выберите два верных утверждения о данной ситуации и укажите их номера.
1) Если в точку \(A\) поместить пробный точечный отрицательный заряд, то на него со стороны пластины будет действовать сила, направленная вертикально вверх.
2) Пластина имеет положительный заряд.
3) Потенциал электростатического поля в точке \(B\) выше, чем в точке \(C\) .
4) Напряжённость поля в точке \(C\) больше, чем в точке \(A\) .
5) Работа электростатического поля по перемещению пробного точечного отрицательного заряда из точки \(A\) в точку \(B\) положительна.

1) \(\color>\)
Если в точку \(A\) поместить пробный точечный отрицательный заряд, то на него будет действовать сила, направленная вертикально вниз, так как заряд и пластина заряжены разноименно (см. пункт 2).
2) \(\color>\)
На рисунке видно, что линии напряженности выходят из пластины. Следовательно, она заряжена положительно.
3) \(\color>\)
Чем ближе точка расположена к пластине, тем в ней больше потенциал электростатического поля. Потенциал возрастает при приближении к положительной пластине.
4) \(\color>\)
Напряжённость поля одинакова во всех точках над пластиной.
5) \(\color>\)
Заряд в точках \(A\) и \(B\) будет иметь одинаковый потенциал. Следовательно, работа по его перемещению между этими точками равна нулю.

Задание 3 #16000

Две параллельные металлические пластины больших размеров расположены на расстоянии \(d\) друг от друга и подключены к источнику постоянного напряжения (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения.
1) Если увеличить расстояние \(d\) между пластинами, то напряжённость электрического поля в точке В уменьшится.
2) Если пластины полностью погрузить в керосин, то энергия электрического поля пластин останется неизменной.
3) Напряжённость электрического поля в точке А меньше, чем в точке С.
4) Потенциал электрического поля в точке А выше, чем в точке С.
5) Если уменьшить расстояние \(d\) между пластинами, то заряд левой пластины уменьшится.

1) \(\color>\)
При увеличении расстояния, заряд пластин не изменится, но увеличится расстояние до точки \(B\) (пробного заряда \(q\) ), следовательно, сила Кулона уменьшится, при этом напряженность равна: \[E=\dfrac\] Следовательно, напряженность уменьшится
2) \(\color>\)
При погружении ёмкость конденсатора увеличится, а напряжение не изменится, следовательно, по формуле: \[W=\dfrac\] энергия увеличится
3) \(\color>\)
Внутри плоского конденсатора получается однородное электрическое поле, напряженность которого в каждой точке одинакова.
4) \(\color>\)
Да, так как точка А находится ближе к заряженной пластине, то на гипотетический заряд в этой точке будет действовать бОльшая сила Кулона, чем в точке C.
5) \(\color>\)
При уменьшении расстояния между пластинами ёмкость увеличивается, из формулы: \[C=\varepsilon_0\dfrac\] Следовательно, конденсатор сможет накопить больший заряд

Задание 4 #16001

Для оценки заряда, накопленного воздушным конденсатором, можно использовать устройство, изображённое на рисунке: лёгкий шарик из оловянной фольги подвешен на изолирующей нити между двумя пластинами конденсатора, при этом одна из пластин заземлена, а другая заряжена положительно. Когда устройство собрано, а конденсатор заряжен (и отсоединён от источника), шарик приходит в колебательное движение, касаясь поочерёдно обеих пластин.

Выберите два верных утверждения, соответствующих колебательному движению шарика после первого касания пластины.
1) По мере колебаний шарика напряжение между пластинами конденсатора уменьшается.
2) При движении шарика к положительно заряженной пластине его заряд равен нулю, а при движении к заземлённой пластине — положителен.
3) При движении шарика к заземлённой пластине он заряжен положительно, а при движении к положительно заряженной пластине — отрицательно.
4) При движении шарика к заземлённой пластине он заряжен отрицательно, а при движении к положительно заряженной пластине — положительно.
5) По мере колебаний шарика электрическая ёмкость конденсатора уменьшается.

1) По мере движения, заряд от конденсатора будет уходить в землю и напряжение между обкладками падать. Сначала шарик соприкоснется с положительно заряженной пластиной и станет положительно заряженной, начнет от нее отталкиваться, пока не коснется нейтрально заряженной и там потеряет заряд и так, пока колебания не прекратятся
2)–4) Из пункта 1, шарик при движении к заземленной пластине будет заряжен положительно.
5) На пластины конденсатора никак не воздействуют (не изменяют расстояние между ними и не изменяют площадь), следовательно, ёмкость будет постоянна

Задание 5 #16002

Плоский воздушный конденсатор ёмкостью \(C_0\) , подключённый к источнику постоянного напряжения, состоит из двух металлических пластин, находящихся на расстоянии \(d_0\) друг от друга. Расстояние между пластинами меняется со временем так, как показано на графике.

Выберите два верных утверждения, соответствующих описанию опыта.
1) В момент времени \(t_4\) ёмкость конденсатора увеличилась в 5 раз по сравнению с первоначальной (при t = 0).
2) В интервале времени от \(t_1\) до \(t_4\) заряд конденсатора уменьшается.
3) В интервале времени от \(t_1\) до \(t_4\) энергия конденсатора равномерно уменьшается.
4) В промежутке времени от \(t_1\) до \(t_4\) напряжённость электрического поля между пластинами конденсатора остаётся постоянной.
5) В промежутке времени от \(t_1\) до \(t_4\) напряжённость электрического поля между пластинами конденсатора увеличивается.

1) \(\color>\) Ёмкость определяется формулой: \[C=\varepsilon_0\dfrac\] Следовательно, при уменьшении расстояния в 5 раз, ёмкость возрастет в 5 раз
2) \(\color>\)
Заряд равен: \[q=CU\] Так как ёмкость увеличивается, а напряжение постоянно, то заряд увеличивается.
3 ) \(\color>\)
Энергия конденсатора: \[W=\dfrac\] Аналогично предыдущему пункту энергия увеличивается.
4) \(\color>\)
Напряженность вычисляется по формуле: \[E=\dfrac\] Так как напряжение постоянно, а расстояние между пластинами уменьшается, то напряженность увеличивается.
5) \(\color>\) См. пункт 4

Задание 6 #16003

На уединённой неподвижной проводящей сфере радиусом \(R\) находится положительный заряд \(Q\) . Сфера находится в вакууме. Напряжённость электростатического поля сферы в точке A равна 36 В/м. Все расстояния указаны на рисунке.

Выберите два верных утверждения, описывающих данную ситуацию.
1) Потенциал электростатического поля в точке \(A\) выше, чем в точке \(F\) : \(\phi_A>\phi_F\)
2) Потенциал электростатического поля в точках \(B\) и \(D\) одинаков: \(\phi_B =\phi_D\)
3) Потенциал электростатического поля в точках \(A\) и \(B\) одинаков: \(\phi_A=\phi_B\)
4) Напряжённость электростатического поля в точке C \(E_C\) = 9 В/м.
5) Напряжённость электростатического поля в точке B \(E_B\) = 0.
Досрочный экзамен по физике 2020 г.

Для начала определим формулы, по которым можно рассчитать необходимые величины. Потенциал: \[\phi= \dfrac\] Но потенциал внутри сферы будет равен потенциалу на поверхности сферы.
Напряженность: \[E=\dfrac\] Но напряженность внутри сферы равна 0. \(r\) – расстояние от центра сферы до нужной точки.
1) \(\color>\)
Точка \(A\) находится дальше от центра сферы, следовательно, потенциал в ней меньше.
2) \(\color>\)
Из вышесказанного потенциалы одинаковы (см. перед пунктом 1)
3) \(\color>\)
Точка \(A\) находится дальше от центра сферы, следовательно, потенциал в ней меньше.
4) \(\color>\)
Расстояние от центра сферы до точек \(A\) и \(C\) одинаково, следовательно, напряженность в этих точках тоже одинаковая.
5) \(\color>\)
Точка \(B\) находится внутри сферы, следовательно, напряженность в ней равна 0.

Задание 7 #16004

Два незаряженных стеклянных кубика 1 и 2 сблизили вплотную и поместили в электрическое поле, напряженность которого направлена горизонтально влево, как показано в верхней части рисунка. Затем кубики раздвинули (нижняя часть рисунка).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных экспериментальных исследований, и укажите их номера.
1) После того как кубики раздвинули, заряд первого кубика оказался положителен, заряд второго — отрицателен.
2) После помещения в электрическое поле электроны из первого кубика стали переходить во второй.
3) После того как кубики раздвинули, заряды обоих кубиков остались равными нулю.
4) До разделения кубиков в электрическом поле левая поверхность 1-го кубика была заряжена отрицательно.
5) После того как кубики раздвинули, правые поверхности обоих кубиков оказались заряжены отрицательно.

Стекло относится к диэлектрикам, в которых возникающая во внешнем электрическом поле поляризация вызывается в основном ориентацией полярных молекул или появлением наведённой поляризации у неполярных молекул, а не за счёт перемещения подвижных зарядов (электронов).

Поэтому после того, как кубики раздвинули, (полные) заряды обоих кубиков остались равными нулю, а правые поверхности обоих кубиков оказались заряжены отрицательно.

36. Работа электростатического поля при перемещении заряда. Разность потенциалов.

При перемещении заряда электрическим полем на расстояние совершенная работа равна . Как и в случае с работой силы тяжести, работа кулоновской силы не зависит от траектории перемещения заряда. При изменении направления вектора перемещения на 180 0 работа сил поля меняет знак на противоположный. Таким образом, работа сил электростатического поля при перемещении заряда по замкнутому контуру равна нулю. Поле, работа сил которого по замкнутой траектории равна нулю, называется потенциальным полем.

Точно так же, как тело массой m в поле силы тяжести обладает потенциально энергией, пропорциональной массе тела, электрический заряд в электростатическом поле обладает потенциальной энергией Wp, пропорциональной заряду. Работа сил электростатического поля равна изменению потенциальной энергии заряда, взятому с противоположным знаком. В одной точке электростатического поля разные заряды могут обладать различной потенциальной энергией. Но отношение потенциальной энергии к заряду для данной точки есть величина постоянная. Эта физическая величина называется потенциалом электрического поля , откуда потенциальная энергия заряда равна произведению потенциала в данной точке на заряд. Потенциал – скалярная величина, потенциал нескольких полей равен сумме потенциалов этих полей. Мерой изменения энергии при взаимодействии тел является работа. При перемещении заряда работа сил электростатического поля равна изменению энергии с противоположным знаком, поэтому . Т.к. работа зависит от разности потенциалов и не зависит от траектории между ними, то разность потенциалов можно считать энергетической характеристикой электростатического поля. Если потенциал на бесконечном расстоянии от заряда принять равным нулю, то на расстоянии r от заряда он определяется по формуле .

37. Напряжение. Электроемкость. Конденсаторы.

Отношение работы, совершаемой любым электрическим полем при перемещении положительного заряда из одной точки поля в другую, к значению заряда называется напряжением между этими точкам , откуда работа . В электростатическом поле напряжение между двумя любыми точками равно разности потенциалов между этими точками . Единица напряжения (и разности потенциалов) называется вольтом, . 1 вольт равен такому напряжению, при котором поле совершает работу в 1 джоуль по перемещению заряда в 1 кулон. С одной стороны, работа по перемещению заряда равна произведению силы на перемещение. С другой стороны, она может быть найдена по известному напряжению между участками пути. Отсюда. Единицей напряженности электрического поля является вольт на метр (в/м).

Конденсатор – система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Между пластинами напряженность поля равна удвоенной напряженности каждой из пластин, вне пластин она равна нулю. Физическая величина, равная отношению заряда одной из пластин к напряжению между обкладками называется электроемкостью конденсатора . Единица электроемкости – фарад, емкостью 1 фарад обладает конденсатор, между обкладками которого напряжение равно 1 вольту при сообщении обкладкам заряда по 1 кулону. Напряженность поля между пластинами твердого конденсатора равна сумме напряженность ей пластин. , а т.к. для однородного поля выполняется , то , т.е. электроемкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними. При введении между пластинами диэлектрика, его электроемкость повышается в  раз, где  – диэлектрическая проницаемость вводимого материала.

38. Диэлектрическая проницае­мость. Энергия электрического поля.

Диэлектрическая проницаемость это физическая величина, характеризующая отношение модуля напряженности электрического поля в вакууме к модулю электрического поля в однородном диэлектрике. Работа электрического поля равна, но при зарядке конденсатора его напряжение вырастает от 0 до U, поэтому. Следовательно, и потенциальная энергия конденсатора равна .

39. Электрический ток. Сила тока. Условия существования элек­трического тока.

Электрическим током называется упорядоченное движение электрических зарядов. За направление тока принято движение положительных зарядов. Электрические заряды могут упорядоченно двигаться под действием электрического поля. Поэтому достаточным условием существования тока является наличие поля и свободных носителей заряда. Электрическое поле может быть создано двумя соединенными разноименно заряженными телами. Отношение заряда q, переносимого через поперечное сечение проводника за интервал времени t к этому интервалу называется силой тока . Если сила тока со временем не изменяется, то ток называется постоянным. Чтобы ток существовал проводнике в течение длительного времени, необходимо, чтобы условия, вызывающие ток, были неизменными. . Силы, вызывающие перемещение заряда внутри источника тока, называются сторонним силами. В гальваническом элементе (а любая батарейка – г.э. ) ими являются силы химической реакции, в машине постоянного тока – сила Лоренца.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *