Прямое и обратное чередование фаз
ЧЕРЕДОВАНИЕ ФАЗ — последовательность фаз (порядок прохождения через положительные максимумы токов или напряжений фаз трехфазной ( m -фазной системы).
Различают прямой порядок чередования фаз, когда положительный максимум тока наступает сначала в фазе А, затем в фазе В, потом в фазе С и снова в фазе А, и обратный порядок чередования фаз, когда положительный максимум изменяется в последовательности А—С—В.
Порядок чередования фаз определяют с помощью фазоуказателя или других приборов при фазировке.
Совпадение порядка чередования фаз одно из условий синхронизации при включении генераторов на параллельную работу. См. также Одноименность фаз.
1. Филатов А.А. Фазировка электрического оборудования. М.: Энергия, 1977.
© ЗАХАРОВ О.Г. 2010-2013. Правка 2015, 2016 ,2017 ,2021
Фазировка оборудования — Основные понятия и определения
Под трехфазной системой ЭДС (напряжений) понимают совокупность трех симметричных ДС, амплитуды, которых равны по значению и сдвинуты (амплитуда каждой ЭДС относительно предшествующей ей амплитуды другой ЭДС) на один и тот же фазный угол. На рис. 1,д приведена схема простейшего синхронного генератора трехфазного тока. Обмотки, в. которых наводятся переменные ЭДС, помещены в пазы статора, смещенные по окружности на 120°. Выводам обмоток присвоены обозначения «начал» АБСа «концов» X, Y, Z соответственно. По обмотке ротора проходит постоянный ток, создавая магнитное поле. При пересечении обмоток статора магнитным полем вращающегося ротора в них наводится симметричная система трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе на 120° (рис. 1,6). За один оборот ротора, что соответствует периоду времени Т, в каждой из обмоток происходит полный цикл изменения ЭДС. Когда ось ротора/— / пересекает витки обмотки статора, в них наводится максимальная ЭДС. Но так как для трех обмоток статора это происходит в разные моменты времени, то и максимумы наведенных ЭДС не совпадают по фазе, т. е. их амплитуды Ед, Eg, Ее оказываются сдвинутыми одна относительно другой на 1/3 периода, или на 120°.
Фаза. Угол, характеризующий определенную стадию периодически изменяющегося параметра (в данном случае ЭДС), называют фазовым углом или простой фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся ЭДС одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяют между одинаковыми фазами, например между началами синусоид, как это показано на рис. 1,6, или между амплитудами. При сдвиге двух синусоид по фазе одна из них будет отставать от другой по времени. Чтобы определить, какая из синусоид отстает, находят их начала, т. е. нулевые значения ЭДС при переходе от отрицательных 6 значений к положительным.
Рис. 1. Получение трехфазной симметричной системы ЭДС: 1 — статор; 2 — обмотка статора; 3 — ротор; 4 — обмотка ротора
На рис. 1,6 начала обозначены буквами а, Ь, с. Из рисунка видно, что начало одной синусоиды (например, синусоиды, проходящей через точку Ь) расположено правее начала другой (синусоиды, проходящей через точку а ). Это свидетельствует о том, что синусоида с началом в точке b отстает по времени от синусоиды с началом в точке а Еще более отстает синусоида, проходящая через точку с, так как ее начало сдвинуто на (2/3) Т или на 240° от начала координат (момента, когда / = 0). В равной мере можно говорить, что синусоида с началом в точке а опережает синусоиды с началом в точке b на (1/3) Tvi с началом в точке с — на (2/3) Т.
На практике под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.
Фазы обозначают прописными буквами А, В, С. Но навешивать надписи букв на оборудование станций и подстанций не всегда удобно. Поэтому при окраске оборудования (например, сборных и соединительных шин в закрытых РУ), которая применяется с целью защиты от коррозии, используют красители различного цвета. Краску наносят по всей длине шин.
Шины фазы А окрашивают в желтый цвет, фазы В — в зеленый и фазы С — в красный. Поэтому фазы часто называют Ж, 3, К. Для распознавания фаз оборудования на кожухах, арматуре изоляторов, конструкциях и опорах наносят соответствующие цветные метки в виде кружков или полос.
Таким образом, в зависимости от рассматриваемого вопроса фаза — это либо угол, характеризующий состояние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.
Порядок следования фаз. Порядок, в котором ЭДС в фазных обмотках генератора проходят через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы ЭДС могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,с, то фазы будут следовать в порядке А, В, С — это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить на противоположное, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В — это обратный порядок следования фаз.
Иногда вместо термина «порядок следования фаз» говорят «порядок чередования фаз». Во избежание путаницы условимся применять термин «Чередование фаз» только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.
Чередование фаз.
Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины и т. д.) расположены в пространстве, если обход их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок (ПУЭ) предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при расположении их в вертикальной плоскости: верхняя шина — желтая, средняя — зеленая, нижняя — красная. При расположении шин в горизонтальной плоскости наиболее удаленная шина окрашивается в желтый цвет, а ближайшая к коридору обслуживания — в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза Ж, 8 справа — фаза К, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ — из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя — в зеленый, отдаленная — в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы Ж, справа — фазы К, если смотреть со стороны шин на трансформатор.
Отступление от указанных выше требований порядка чередования окраски шин РУ ПУЭ допускают в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов BЛ.
Совпадение фаз. При фазировке трехфазных цепей могут быть различные варианты чередования обозначений (расцветки) вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз. Для простоты дальнейших рассуждений допустим, что фазируемые напряжения двух систем шин электроустановки имеют одинаковые порядки следования фаз А, В, С и Ах, Bi, С|. При этом условии фазы одноименных напряжений могут совпасть, а порядок чередования обозначений вводов у выключателя может не совпасть (рис- 2, а) или, наоборот, при одном и том же порядке чередования обозначений вводов фазируемые напряжения могут оказаться сдвинутыми по фазе (рис. 2, б). Поворот одноименных векторов напряжений относительно друг друга может быть не только на угол 120°, как это показано на рис. 2,6, но на любой угол, кратный 30е, что Характерно для трансформаторов, имеющих разные группы соединения обмоток. В обоих приведенных случаях включение выключателя неизбежно приводит к КЗ.
В то же время возможен вариант, когда совпадает и то, и другое (рис. 2, в) — Короткое замыкание между соединяемыми частями установки здесь исключено.
Под совпадением фаз при фазировке как раз и понимают именно этот случай, когда на вводах выключателя, расположенных друг против друга и принадлежащих одной фазе, одноименные напряжения двух частей установки совпадают по фазе, а обозначения (расцветка) вводов выключателя согласованы с соответствующими фазами напряжения и имеют один и тот же порядок чередования.
Векторное изображение синусоидально изменяющихся ЭДС (напряжений, токов). Периодически изменяющиеся синусоидальные величины изображают в виде синусоид (рис. 1,6) и вращающимися векторами — направленными отрезками прямой линии (рис. 1,в).
Рис. 2. Варианты несовпадения (е. б) и совпадения (в) фаз двух частей электроустановки
Для векторов фазных ЭДС Ej4, Eg. Eq> изображенных на этом рисунке, условно приняты направления от начал обмоток к их концам. Связь между синусоидальной кривой и вращающимися векторами показана на рис. 3. Синусоида получается проектированием вращающегося вектора (равного в заданном масштабе амплитуде изменяющейся ЭДС) на вертикальную ось /-/, перемещаемую по оси абсцисс со скоростью, пропорциональной частоте вращения вектора. Сдвиг фаз между двумя векторами, начала которых совмещены в одной точке, определяется углом V (рис.4). Отставание вектора Eg от вектора Ед показано направлением стрелки угла (против направления вращения векторов).
Следует сказать, что понятие вращающегося вектора ЭДС (напряжения, тока и т.д.) в электротехнике несколько отличается от понятия вектора, скажем, силы или скорости в механике.
Рис. 3. Получение синусоидального графика при вращении вектора
Рис. 4. Изображение двух ЭДС синусоидами и векторами при различных углах сдвига
Если в механике векторы не могут быть определены полностью только по их значениям без указания направления их действия в пространстве, то в электротехнике вращающиеся векторы не определяют действительного направления изображаемых ими величин в пространстве. Однако совокупное расположение вращающихся с одной частотой векторов (например, ЭДС трех фаз) на диаграмме дает представление о происходящем в электрической цепи процессе во времени и позволяет сделать количественную оценку явлений путем проведения элементарных операций над векторами.
Основные Схемы соединений трехфазных цепей.
Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.
При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, в), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными ЭДС и обозначают Ед, Eg, Ее, или просто £ф. Электродвижущие силы между выводами фаз называют линейными tn. Они получаются как разность векторов соответствующих фазных ЭДС генератора, например Ед — Eg = Едд (рис. 5,в).
Рис. 5. Соединение обмоток генератора в звезду (о), векторная диаграмма ЭДС (б), вычитание векторов фазных ЭДС (в)
Рис. 6. Соединение обмоток генератора треугольником (д) и векторная диаграмма ЭДС (б)
Порядок индексов в обозначении линейных ЭДС не произволен — индексы ставятся в порядке
вычитания векторов: Ев-Ес= Евс\ Ес-Ёл = ЕСА- С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора ЭДС отстающей фазы из вектора ЭДС опережающей. В результате векторы линейных ЭДС всегда опережают уменьшаемые фазные векторы на 30°. Значения линейных ЭДС в \Д или в 1,73, раз больше фазных, в чем легко убедиться измерением векторов на диаграмме.
Соединение обмоток генератора треугольником показано на рис. 6,о. Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными ЭДС промышленной частоты, сдвинутыми относительно друг друга на (1/3) Т, так как в каждый момент времени геометрическая сумма ЭДС, действующих в контуре треугольника, равна нулю. Убедиться в этом можно, рассматривая векторную диаграмму рис.»6, б и синусоиды мгновенных значений ЭДС трехфазного генератора (рис. 1, б).
Рис. 7. Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов:
а — фазы ЭДС Ед и Еа совпадают; б — ЭДС Ед и Eg находятся в противофазе
Из рис. 6, а видно, что при соединении треугольником линейные провода отходят непосредственно от начала и конца обмотки каждой фазы, поэтому фазные ЭДС равны линейным и совпадают с ними по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко и только у турбогенераторов одного типа (ТВС-30).
Обмотки трансформаторов, так же как и генераторов, соединяют в звезду и треугольник (схема зигзага встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки среднего (СН) и низшего (НН) напряжений также соединяют в У или Д.
В отличие от генераторов у мощных трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным [lj.
Группы соединений обмоток трансформаторов. Между первичной я вторичной ЭДС трансформатора, включенного под напряжение, может быть угол сдвига, который в общем случае зависит от схемы соединения и направления намотки обмоток, а также от обозначения (маркировки) зажимов.
Число сочетаний схем соединений У и Д может быть не более четырех: У/У, У/Д, Д/Д и Д/У, но, принимая во внимание возможность намотки обмоток на магнитопроводе в разных направлениях, случайное и преднамеренное изменение маркировки зажимов, а также соединение фазных обмоток в треугольник в ином чередовании, число схем включений трансформатора значительно возрастает. Приведем примеры. У каждой обмотки есть начало и конец. Начала обмоток обозначают буквами А, В, С, а, Ь, с, а концы X, ¥, Z, х, у, г соответственно. И хотя эти понятия условны, они имеют прямое отношение к действующей в обмотке ЭДС.
Рис. 8. Два варианта схем соединения фазных обмоток НН треугольником
Если у одной из обмоток поменять обозначения начала а и конца * (рис. 7), то, принимая ориентацию ЭДС по отношению к новому началу прежней (от * к в ), необходимо считать вектор ЭДС Еа повернутым на 180°. К такому же результату приводит и изменение направления намотки обмоток. В обмотках с односторонней намоткой (витки обеих обмоток идут от начал в правую или левую сторону) ЭДС совпадают по направлению, при разносторонней намотке они сдвинуты на 180°.
Рис. 9. Схемы и группы соединения обмоток трансформаторов и автотрансформаторов :
а — трехфазных двухобмоточных трансформаторов; б — трехфазных трехобмоточнмх трансформаторов; в — трехфазных трехобмоточных автотрансформаторов
Рис. 10. Циклическая перемаркировка фаз обмотки в стандартной схеме. У/У-0
На рис. 8, а показано соединение фазных обмоток треугольником в стандартном порядке: а — у; Ь— z; с — х. Если обмотки соединить в порядке Oi — zt; сх — уЬг — xt (рис. 8,6), то векторы линейных ЭДС НН смещаются по отношению друг к другу на 60° (рис. 8, в) *
Чтобы упорядочить все многообразие схем соединений обмоток трансформаторов, введено понятие о группе соединений, характеризующее угловое смещение векторов линейных ЭДС вторичных обмоток относительно одноименных векторов линейных ЭДС обмотки ВН независимо от того, является трансформатор понижающим или повышающим.
Рис. 11. Циклическая перемаркировка фаз при ошибочном монтаже ошиновки. Обозначение фаз НН, соответствующее группе У/У-О, показано в скобках
Группа соединений обозначается числом, которое при умножении на 30° дает угол отставания вектора ЭДС вторичной обмотки от ЭДС Вектора первичной обмотки. Если, например, схема и группа соединений трансформатора обозначены У/Д-11, то смещение векторов линейных ЭДС равно 330°.
В ГОСТ 11677-75* предусмотрены две группы соединения обмоток трехфазных двухобмоточных трансформаторов: 0 и 11 (рис.9). Практически могут встретиться 12 групп и, кроме того, такие соединения, которые вообще не могут быть отнесены к какой-либо определенной группе. Заметим, что нестандартные группы могут быть получены ошибочно при монтаже и ремонте оборудования без вскрытия трансформатора и пересоединения его обмоток. Для этого достаточно, например, перекрасить шины фаз или перемаркировать обозначения выводов и потом ориентироваться на эти обозначения. Типичными являются следующие случаи. При перемещении обозначений выводов фаз (циклическая перемаркировка фаз), когда по кругу меняются местами надписи на выводах трех фаз на стороне ВН или НН (рис. 10), группа соединений каждый раз изменяется на 4 или 8 угловых единиц. Так, при подсоединении трансформатора зажим фазы b может ошибочно оказаться подсоединенным к сборной шине фазы а, зажим с — к шине фазы Л и т. д. Такое подсоединение равносильно перемаркировке фаз и влечет за собой изменение исходной группы трансформатора на 4 единицы. Действительно, построение и совмещение векторных диаграмм (рис.11) показывает, что векторы повернуты на 120°, или на 4 единицы.
*В построениях векторных диаграмм на рнс. 8 и далее принято направление векторов линейных ЭДС (напряжений) обмоток ВН от В к А и обмоток НН — от Ь к а .
Рис. 12. Двойная перемаркировка фаз при ошибочном монтаже ошиновки на стороне ВН и НН: а — исходная группа У/Д-11; б — перемаркировка одноименных фаз А и С, а и с; в — перемаркировка разноименных фаз А и С.
Рис. 13. Ошибочное обозначение выводов двух фаз b и с на стороне низшего напряжения
Перестановка обозначений двух фаз на стороне ВН и одновременно НН (двойная перемаркировка) у трансформатора, имеющего нечетную группу соединений, вызывает угловое смещение векторов ЭДС вторичной обмотки относительно их первоначального положения на 60 или 300°. Значение угла зависит от того, какие две фазы на стороне ВН, а также на стороне НН перемещаются — одноименные или разноименные. На рис. 12 показано, что достаточно поменять местами соединительные шины двух фаз А и С на стороне ВН и тех же фаз на стороне НН, как группа 11 перейдет в группу 1, а при перемене мест фаз А и С и. одновременно Ь и с группа 11 превращается в 9.
Наиболее вероятен в эксплуатационной практике случай перекрещивания шин только двух фаз на какой-нибудь одной стороне (ВН или НН), например фаз b и с. При этом изменяется порядок чередования фаз. Вместо а — b -с порядок чередования будете — с — Ь (рис. 13), и углы сдвига фаз одноименных ЭДС обмоток ВН и НН будут неодинаковы: = 0°; ifpb = 120°; \fCc — 240°. Это обстоятельство не позволяет отнести трансформатор к определенной группе соединений.
Одним из основных условий параллельной работы трансформаторов является тождественность групп соединений их обмоток, что устанавливается по паспортным данным или специальными измерениями. Но даже при одинаковых группах перед первым включением в работу (после монтажа или капитального ремонта со сменой обмоток, отсоединением кабелей и пр.) трансформатор фазируют с сетью, так как на зажимах включающего аппарата (выключателя, отделителя, рубильника) может появиться сдвиг фаз в результате неправильного присоединения токоведущих частей к аппаратам и выводам трансформатора, о чем было сказано выше. Здесь следует особо подчеркнуть, что цель фазировки заключается не в определении группы, к которой принадлежит включаемый трансформатор, а в проверке согласованности соединяемых фаз всех элементов трехфазной цепи со стороны как высшего, так и низшего напряжения.
Как определить чередование фаз трехфазного электродвигателя
В процессе монтажа электрооборудования, в частности, параллельного подключения трансформаторов, актуален вопрос о том, как определить чередование фаз трехфазного электродвигателя. С порядком и правильностью чередования связаны:
- безопасность запуска оборудования;
- направление вращения роторов асинхронных двигателей (особенно важно, если от них зависит работа нескольких механизмов).
В этой статье приведены основные способы и наиболее широко применяемые для решения этой задачи приборы.
Как определить чередование фаз трехфазного электродвигателя: основные приемы
Если условно обозначить разноименные фазы в любой трехфазной сети (смещение синусоид для них составляет 120°) как A, B и C, то можно выделить следующие варианты порядка чередования:
- прямые (CAB, BCA, ABC);
- обратные (ACB, BAC, CBA).
Подключая оборудование к трехфазной сети при помощи силового кабеля, порядок следования фаз можно проверить без применения специальных приборов. При этом ориентируются на цветовую (или цифровую) маркировку изоляции жил электропровода. Следует заметить, что на практике маркировка изоляции может оказаться недостаточным критерием, поскольку не все производители дают гарантию совпадения цвета изоляции жилы в начале и в конце кабеля.
Добиться более надежных результатов позволяет такой доступный и несложный способ «прозвонки» жил, как использование двух телефонных трубок. Одна из трубок при этом является «активной» (снабжена батарейкой питания), другая «пассивная», без питания. Существует парная гарнитура, снабженная наушниками и зажимами, специально для проведения фазировки.
Также можно воспользоваться мегомметром. При этом для персонала обязательно строгое соблюдение мер безопасности.
Контроль фазировки при помощи фазоуказателей
Осуществить контроль фазировки (порядка чередования и одноименности фаз) можно с помощью простого фазоуказателя ФУ 2, который состоит из трех обмоток и вращающегося при проверке алюминиевого диска. Прибор действует по принципу асинхронного двигателя и применяется следующим образом:
- к выводам подключают 3 провода от источника напряжения;
- диск начинает вращение;
- если направление вращения совпадает с направлением стрелки на приборе, то порядок чередования прямой;
- вращение в противоположную относительно направления стрелки сторону указывает на обратное чередование.
Спросом также пользуется серия портативных фазоуказателей TKF, которая имеет следующие преимущества:
- компактность и простота в использовании (прибор не требует дополнительного источника питания);
- удобная светодиодная индикация результатов измерений — три светодиода отвечают за информацию о наличии напряжения на каждой фазе, еще два, R и L, указывают собственно направление чередования фаз;
- полнофункциональность.
Как определить одноименные фазы
Поскольку как прямое, так и обратное чередование предполагают по три варианта расположения фаз A, B и C, следующим шагом будет определение одноименных фаз. Для этого потребуется мультиметр (или вольтметр), которым замеряют показатели напряжения между фазами источников питания. Данный показатель будет равен нулю между одноименными фазами, их отмечают и таким же образом определяют две другие пары. При отсутствии мультиметра может быть применен осциллограф.
Знание основных принципов контроля чередования фаз и применение современных приборов позволяет избежать нарушения последовательности фаз при подключении дорогостоящего оборудования, обеспечивая тем самым эффективность и безопасность пусконаладочных работ.
Что такое порядок чередования фаз в трехфазной сети
Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.
Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.
Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.
Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.
В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.
Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.
Что такое фазировка трехфазной сети
Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.
Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр. Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва).
Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.
Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.
Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.
Помогла вам статья?