Резонанс токов в цепи переменного тока
Перейти к содержимому

Резонанс токов в цепи переменного тока

  • автор:

Резонанс токов

Рассмотрим явления в цепи переменного тока, содержащей генератор, конденсатор и катушку индуктивности, соединенные параллельно. Предположим при этом, что активным сопротивлением цепь не обладает.

Очевидно, в такой цепи напряжение как на катушке, так и на конденсаторе в любой момент времени равно напряжению, развиваемому генератором.

Общий же ток в цепи слагается из токов в ее разветвлениях. Ток в индуктивной ветви отстает по фазе от напряжения на четверть периода, а ток в емкостной ветви опережает его на те же четверть периода. Поэтому токи в ветвях в любой момент времени оказываются сдвинутыми по фазе один относительно другого на полупериода, т. е. находятся в противофазе. Таким образом токи в ветвях в любой момент времени направлены навстречу один другому, а общий ток в неразветвленной части цепи равен разности их.

Это дает нам право написать равенство I = IL — IC

где I — действующее значение общего тока в цепи, IL и IC — действующие значения токов в.ветвях.

Пользуясь законом Ома для определения действующих значений тока в ветвях, получим:

Il = U / XL и I C = U / XC

Если в цепи преобладает индуктивное сопротивление, т. е. XL больше XC , ток в катушке меньше тока в конденсаторе; следовательно, ток в неразветвленном участке цепи носит емкостный характер, и цепь в целом для генератора будет емкостной. И, наоборот, при ХC большем XL , ток в конденсаторе меньше тока в катушке; следовательно, ток в неразветвленном участке цепи имеет индуктивный характер, и цепь в целом для генератора будет индуктивной.

При этом не следует забывать, что в том и другом случае нагрузка реактивная, т. е. цепь не потребляет энергии генератора.

Рассмотрим теперь случай, когда у параллельно соединенных конденсатора и катушки оказались равными их реактивные сопротивления, т. е. X lL = X C .

Если мы, как и прежде, будем считать, что катушка и конденсатор не обладают активным сопротивлением, то при равенстве их реактивных сопротивлений (YL = Y C ) общий ток в неразветвленной части цепи окажется равным нулю, тогда как в ветвях будут протекать равные токи наибольшей величины. В цепи в этом случае наступает явление резонанса токов.

При резонансе токов действующие значения токов в каждом разветвлении, определяемые отношениями IL = U / XL и I C = U / X C будут равны между собой, так XL = ХC.

Вывод, к которому мы пришли, может показаться на первый взгляд довольно странным. Действительно, генератор нагружен двумя сопротивлениями, а тока в неразветвленной части цепи нет, тогда как в самих сопротивлениях протекают равные и притом наибольшие по величине токи.

Объясняется это поведением магнитного поля катушки и электрического поля конденсатора. При резонансе токов, как и при резонансе напряжений, происходит колебание энергии между полем катушки и полем конденсатора. Генератор, сообщив однажды энергию цепи, сказывается как бы изолированным. Его можно было бы совсем отключить, и ток в разветвленной части цепи поддерживался бы без генератора энергией, которую в самом начале запасла цепь. Равно и напряжение на зажимах цепи оставалось бы точно таким, какое развивал генератор.

Таким образом, и при параллельном соединении катушки индуктивности и конденсатора мы получили колебательный контур, отличающийся от описанного выше только тем, что генератор, создающий колебания, не включен непосредственно в контур и контур получается замкнутым.

Графики токов, напряжения и мощности в цепи при резонансе токов

Графики токов, напряжения и мощности в цепи при резонансе токов: а — активное сопротивление равно нулю, цепь мощности не потребляет; б — цепь обладает активным сопротивлением, в неразветвленной части цепи появился ток, цепь потребляет мощность

Значения L, С и f , при которых наступает резонанс токов, определяются, как и при резонансе напряжений (если пренебречь активным сопротивлением контура), из равенства:

f рез = 1 / 2π√ LC

L рез = 1 / ω 2 С

Изменяя любую из этих трех величин, можно добиться равенства X l = X c , т. е. превратить цепь в колебательный контур.

Итак, мы получили замкнутый колебательный контур, в котором можно вызвать электрические колебания, т. е. переменный ток. И если бы не активное сопротивление, которым обладает всякий колебательный контур, в нем непрерывно мог бы существовать переменный ток. Наличие же активного сопротивления приводит к тому, что колебания в контуре постепенно затухают и, чтобы поддержать их, необходим источник энергии — генератор переменного тока.

В цепях несинусоидального тока резонансные режимы возможны для различных гармоничных состовляющих.

Резонанс токов широко используется в практике. Явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту. Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции. Колебательный контур, работающий в режиме резонанса токов, является одним из основных узлов электронных генераторов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Применение резонанса напряжений и резонанса токов

В колебательном контуре, обладающем индуктивностью L, емкостью C и сопротивлением R, свободные электрические колебания имеют тенденцию к затуханию. Чтобы колебания не затухали, необходимо периодически пополнять контур энергией, тогда возникнут вынужденные колебания, которые не будут затухать, ведь внешняя переменная ЭДС станет теперь поддерживать колебания в контуре.

Применение резонанса напряжений и резонанса токов

Если колебания поддерживать источником внешней гармонической ЭДС, частота которой f очень близка к резонансной частоте колебательного контура F, то амплитуда электрических колебаний U в контуре станет резко возрастать, то есть наступит явление электрического резонанса .

Емкость в цепи переменного тока

Емкость в цепи переменного тока

Рассмотрим сначала поведение конденсатора C в цепи переменного тока. Если к генератору, напряжение U на выводах которого меняется по гармоническому закону, присоединить конденсатор C, то заряд q на обкладках конденсатора станет меняться также по гармоническому закону, как и ток I в цепи. Чем больше емкость конденсатора, и чем выше частота f, прикладываемой к нему гармонической ЭДС, тем больше окажется ток I.

С этим фактом связано представление о так называемом емкостном сопротивлении конденсатора XC, которое он вносит в цепь переменного тока, ограничивая ток подобно активному сопротивлению R, но в сравнении с активным сопротивлением, конденсатор не рассеивает энергию в виде тепла.

Если активное сопротивление рассеивает энергию, и таким образом ограничивает ток, то конденсатор ограничивает ток просто из-за того, что в нем не успевает уместиться больше заряда, чем генератор может дать за четверть периода, к тому же в следующую четверть периода конденсатор отдает энергию, которая накопилась в электрическом поле его диэлектрика, обратно генератору, то есть хоть ток и ограничен, энергия не рассеивается (потерями в проводах и в диэлектрике пренебрежем).

Индуктивность в цепи переменного тока

Индуктивность в цепи переменного тока

Теперь рассмотрим поведение индуктивности L в цепи переменного тока. Если вместо конденсатора присоединить к генератору катушку, обладающую индуктивностью L, то при подаче от генератора синусоидальной (гармонической) ЭДС на выводы катушки, — в ней начнет возникать ЭДС самоиндукции , поскольку при изменении тока через индуктивность, увеличивающееся магнитное поле катушки стремится препятствовать росту тока (закон Ленца), то есть получается, что катушка вносит в цепь переменного тока индуктивное сопротивление XL — дополнительное к сопротивлению провода R.

Чем больше индуктивность данной катушки, и чем выше частота F тока генератора, тем выше индуктивное сопротивление XL и меньше ток I, ведь ток просто не успевает устанавливаться, потому что ЭДС самоиндукции катушки ему мешает. И каждые четверть периода энергия, накопленная в магнитном поле катушки, возвращается к генератору (потерями в проводах пока пренебрежем).

Полное сопротивление с учетом R

Полное сопротивление с учетом R

В любом реальном колебательном контуре последовательно соединены индуктивность L, емкость C и активное сопротивление R.

Индуктивность и емкость действуют на ток противоположно в каждую четверть периода гармонической ЭДС источника: на обкладках конденсатора в процессе заряда напряжение увеличивается, хотя уменьшается ток, а при нарастании тока через индуктивность ток хоть и испытывает индуктивное сопротивление, но нарастает и поддерживается.

И во время разряда: разрядный ток конденсатора сначала большой, напряжение на его обкладках стремится установить большой ток, а индуктивность препятствует увеличению тока, и чем больше индуктивность, тем меньший разрядный ток будет иметь место. При этом активное сопротивление R вносит чисто активные потери. То есть полное сопротивление Z, последовательно включенных L, C и R, при частоте источника f, будет равно:

Полное сопротивление

Закон Ома для переменного тока

Закон Ома для переменного тока

Из закона Ома для переменного тока очевидно, что амплитуда вынужденных колебаний пропорциональна амплитуде ЭДС и зависит от частоты. Полное сопротивление цепи будет наименьшим, а амплитуда тока будет наибольшей при условии, что индуктивное сопротивление и емкостное при данной частоте равны между собой, в этом случае наступит резонанс. Отсюда же выводится формула для резонансной частоты колебательного контура :

Формула для резонансной частоты колебательного контура

Резонанс напряжений

Резонанс напряжений

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой последовательно, то резонанс в такой цепи называется последовательным резонансом или резонансом напряжений. Характерная черта резонанса напряжений — значительные напряжения на емкости и на индуктивности, по сравнению с ЭДС источника.

Причина появления такой картины очевидна. На активном сопротивлении по закону Ома будет напряжение Ur, на емкости Uc, на индуктивности Ul, и составив отношение Uc к Ur можно найти величину добротности Q. Напряжение на емкости будет в Q раз больше ЭДС источника, такое же напряжение окажется приложенным к индуктивности.

То есть резонанс напряжений приводит к возрастанию напряжения на реактивных элементах в Q раз, а резонансный ток будет ограничен ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, сопротивление последовательного контура на резонансной частоте минимально.

Применение резонанса напряжений

Применение резонанса напряжений

Явление резонанса напряжений используют в электрических фильтрах разного рода, например если необходимо устранить из передаваемого сигнала составляющую тока определенной частоты, то параллельно приемнику ставят цепочку из соединенных последовательно конденсатора и катушки индуктивности, чтобы ток резонансной частоты этой LC-цепочки замкнулся бы через нее, и не попал к бы приемнику.

Тогда токи частоты далекой от резонансной частоты LC-цепочки будут проходить в нагрузку беспрепятственно, и только близкие к резонансу по частоте токи — будут находить себе кротчайший путь через LC-цепочку.

LC-цепочка, включенная последовательно

Или наоборот. Если необходимо пропустить только ток определенной частоты, то LC-цепочку включают последовательно приемнику, тогда составляющие сигнала на резонансной частоте цепочки пройдут к нагрузке почти без потерь, а частоты далекие от резонанса окажутся сильно ослаблены и можно сказать, что к нагрузке совсем не попадут. Данный принцип применим к радиоприемникам, где перестраиваемый колебательный контур настраивают на прием строго определенной частоты нужной радиостанции.

Вообще резонанс напряжений в электротехнике является нежелательным явлением, поскольку он вызывает перенапряжения и выход из строя оборудования.

В качестве простого примера можно привести длинную кабельную линию, которая по какой-то причине оказалась не подключенной к нагрузке, но при этом питается от промежуточного трансформатора. Такая линия с распределенной емкостью и индуктивностью, если ее резонансная частота совпадет с частотой питающей сети, просто будет пробита и выйдет из строя. Чтобы предотвратить разрушение кабелей от случайного резонанса напряжений, применяют вспомогательную нагрузку.

Но иногда резонанс напряжений играет нам на руку и не только в радиоприемниках. Например, бывает, что в сельской местности напряжение в сети непредсказуемо упало, а станку нужно напряжение не менее 220 вольт. В этом случае явление резонанса напряжений спасает.

Достаточно последовательно со станком (если приводом в нем является асинхронный двигатель) включить по несколько конденсаторов на фазу, и таким образом напряжение на обмотках статора поднимется.

Здесь важно правильно подобрать количество конденсаторов, чтобы они точно скомпенсировали своим емкостным сопротивлением вместе с индуктивным сопротивлением обмоток просадку напряжения в сети, то есть слегка приблизив цепь к резонансу — можно поднять упавшее напряжение даже под нагрузкой.

Резонанс токов

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой параллельно, то резонанс в такой цепи называется параллельным резонансом или резонансом токов. Характерная черта резонанса токов — значительные токи через емкость и индуктивность, по сравнению с током источника.

Причина появления такой картины очевидна. Ток через активное сопротивление по закону Ома будет равен U/R, через емкость U/XC, через индуктивность U/XL, и составив отношение IL к I можно найти величину добротности Q. Ток через индуктивность будет в Q раз больше тока источника, такой же ток будет течь каждые пол периода в конденсатор и из него.

То есть резонанс токов приводит к возрастанию тока через реактивные элементы в Q раз, а резонансная ЭДС будет ограничена ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, на резонансной частоте сопротивление параллельного колебательного контура максимально.

Применение резонанса токов

Применение резонанса токов

Аналогично резонансу напряжений, резонанс токов применяется в различных фильтрах. Но включенный в цепь, параллельный контур действует наоборот, чем в случае с последовательным: установленный параллельно нагрузке, параллельный колебательный контур позволит току резонансной частоты контура пройти в нагрузку, поскольку сопротивление самого контура на собственной резонансной частоте максимально.

Установленный последовательно с нагрузкой, параллельный колебательный контур не пропустит сигнал резонансной частоты, поскольку все напряжение упадет на контуре, а на нагрузку придется мизерная доля сигнала резонансной частоты.

Так, основное применение резонанса токов в радиотехнике — создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.

В электротехнике резонанс токов используется с целью достижения высокого коэффициента мощности нагрузок, обладающих значительными индуктивными и емкостными составляющими.

Например, установки компенсации реактивной мощности (КРМ) представляют собой конденсаторы, подключаемые параллельно обмоткам асинхронных двигателей и трансформаторов, работающих под нагрузкой ниже номинальной.

К таким решениям прибегают как раз с целью достижения резонанса токов (параллельного резонанса), когда индуктивное сопротивление оборудования делается равным емкостному сопротивлению подключаемых конденсаторов на частоте сети, чтобы реактивная энергия циркулировала между конденсаторами и оборудованием, а не между оборудованием и сетью; чтобы сеть отдавала энергию только тогда, когда оборудование нагружено и потребляет активную мощность.

Когда же оборудование работает в холостую, сеть оказывается подключена параллельно резонансному контуру (внешние конденсаторы и индуктивность оборудования), который представляет для сети очень большое комплексное сопротивление и позволяет снизиться коэффициенту мощности.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Что такое резонанс токов и как он возникает

Следует отметить, что такое явление, как резонанс токов наблюдается только в электрических цепях, которые работают с переменным током. В ней обязательно должны присутствовать элементы индуктивности и ёмкости. В сильноточных электрических контурах режим резонанса распространения не получил, но он активно реализуется в системах современной звукозаписывающей и звуковоспроизводящей техники, поскольку позволяет значительно улучшить частотные характеристики выходного аудиосигнала, не увеличивая мощность исходных компонентов.

Определение резонанса токов

Суть процессов, происходящих при резонансе

Резонанс токов и напряжений — процесс, в результате которого происходит усиление амплитуды сигнала. При этом резонанс токов (РТ) является более действенный способом управления, поскольку даже при незначительном росте данного параметра электроцепи амплитуда сигнала существенно увеличивается. Резонанс напряжений подобного эффекта вызвать не может, даже после заметного усложнения схемы устройства.

Резонанс токов возникает в электрической цепи переменного тока, для которой частота электропитания обеспечивает одинаковое значение напряжения на основных элементах схемы — катушке индуктивности L, конденсаторе C и резисторе R. При этом фазы напряжений противоположны. Показатели частотности контура варьируются вследствие изменения абсолютных значений частоты. Таким образом, резонансом тока пользуются, если возникает необходимость создания определённой частотной характеристики конкретного участка цепи.

Условия возникновения резонанса электротоков могут быть реализованы лишь при параллельном соединении катушки индуктивности, конденсатора и резистора. Основные признаки резонанса — это равенство резонансной частоты и частоты источника электротока или индуктивной и емкостной проводимости BL=BC.

Схема параллельного колебательного контура

Изучая, что такое резонанс токов, следует понимать, что общий ток в электроцепи представляет собой сумму токов в ее разветвлениях. В индуктивной ветви электроток отстает от электронапряжения на ¼ периода, а в емкостной ветви, наоборот, электроток опережает электронапряжение на ¼ периода. Следовательно, электротоки в ветвях сдвинуты по фазе относительно друг друга на ½ периода, то есть пребывают в противофазе. Вектор общего электротока в колебательном контуре равен геометрической сумме векторов элетротоков в каждой из ветвей.

Электроток в колебательном контуре

Следовательно, значение модуля электротока определяется так:

Определение модуля электротока

Частотное условие для возникновения РТ

В цепи синусоидального тока, которая содержит R, L и C компоненты, можно получить режим, когда показатель индуктивного сопротивления оказывается идентичным по своему значению показателю емкостного сопротивления. Другими словами, XL=XC . Место, где это происходит, называется точкой формирования резонансной частоты (ƒr) электроцепи. Наличие такой точки — это непременное условие резонанса токов.

Резонанс может быть двух видов:

  • последовательный;
  • параллельный.

Последовательный тип резонанса отличается минимальным сопротивлением при нулевой фазе. Параллельный резонанс появляется при равных по величине сопротивлениях на индуктивности и емкости, но компенсирующих друг друга, поскольку являются противоположно направленными. Параллельный тип более распространён и часто встречается в различных электрических, радиотехнических и электронных устройствах, например, в:

  • фильтрующих узлах систем переменного электротока;
  • фильтрах, предназначенных для целей шумоподавления;
  • настроечных системах радиотелевизионных передающих центров.

Параллельный колебательный контур называют также RLC-контуром. Это связано с аббревиатурой физических величин, свойственных элементам, составляющих данный контур — сопротивления, индуктивности и емкости. Он характеризуется следующими особенностями.

Особенности колебательного контура

При росте показателей индуктивности или частотных характеристик сигнала суммарное значение индуктивного сопротивления увеличивается. В том случае, когда показатель частоты стремится к бесконечности, реактивное сопротивление индукторов резко возрастает, а участок схемы, где это происходит, ведёт себя как разомкнутая цепь. Однако в противоположном случае может возникнуть обратный эффект, проявляющийся в форме короткого замыкания при нулевом сопротивлении. Это происходит, если катушка индуктивности имеет сопротивление:

  • Пропорциональное изменению частотной характеристики.
  • Слабо реагирующее на изменения в области низких частот.
  • Сильно реагирующее на изменения в области высоких частот.

В таких случаях значение индуктивного (реактивного) сопротивления катушки увеличивается прямо пропорционально росту частотной характеристики. Подобный же эффект наблюдается и на конденсаторе, но в обратной последовательности. Если требуется изменить (увеличить) параметры контура, тогда уменьшают значение емкостного сопротивления.

Зависимость индуктивного сопротивления от частоты

Если частота электроцепи приближается к бесконечности, то сопротивление на конденсаторах практически принимает нулевое значение. В результате данные компоненты устройства превращаются в стопроцентные проводники переменного тока с сопротивлением равным нулю. Однако при этом происходит мгновенный рост реактивной составляющей сопротивления, и контур становится разомкнутым.

Суммируя, можно придти к заключению, что реактивное сопротивление конденсатора изменяется обратно изменению частоты, причём номинальная ёмкость компонента значения не имеет.

Зависимость значений сопротивления конденсатора от частоты электроцепи представляет собой гиперболическую функцию. При низких значениях частот реактивное сопротивление конденсатора велико, но в случае роста частотной характеристики оно стремительно снижается. Отсюда можно сделать вывод, что значение сопротивления конденсатора зависит от частоты обратно пропорционально.

Зависимость емкостного сопротивления от частоты

На выше приведенных графиках видно, что при более высокой частоте наблюдается максимум XL, а при низкой — максимум XC. Следовательно, резонанс появляется при условии, что изменения двух противоположных, но равных по своему значению реактивных сопротивлений, накладываясь друг на друга, нивелируют возникающие особенности прохождения переменного тока слабой мощности, т. е. наблюдается условие XL=XC.

Точка пересечения реактивных сопротивлений

Расчёт месторасположения частотной точки при РТ

Последовательность вычислений приведена ниже:

Вычисление местоположения частотной точки

В случае появления РТ происходит математическое уравновешивание значений реактивных сопротивлений, т. е. справедливым является равенство XL–X C=0. Комбинируя индуктивное и емкостное сопротивление, в цепи можно вызвать короткое замыкание (из-за малой мощности тока разрушения контура обычно не происходит). Сдерживающим фактором считается наличие ненулевого общего сопротивления R электрической цепи, которое называют импедансом.

Для контуров переменного электрического тока сопротивление рассматривают в комплексной форме. В этом случае полное сопротивление цепи, которая содержит активное сопротивление, емкость и индуктивность, представляет собой действительную, а не мнимую часть. Приняв это допущение, импеданс электрической цепи в случае резонансной частоты равен величине активного сопротивления: Z=R.

При РТ импеданс минимален, поэтому понятие полного сопротивления цепи иногда называют динамическим. С преобладанием высоких частот импеданс зависит преимущественно от XC, а при низких — от XL.

Минимальный импеданс

Важно, что в ситуации, когда контур содержит компоненты, имеющие емкостное сопротивление, кривая зависимости полного сопротивления от частоты переменного тока всегда отображается в форме гиперболы. Функция может быть несимметричной относительно fr, если влияние индуктивности велико.

В том случае, когда полное сопротивление цепи имеет минимальное значение (а это часто отмечается именно при резонансе токов), проводимость участка приобретает своё наибольшее значение. На практике возникновение подобных ситуаций может привести к опасному явлению, когда РТ многократно увеличивает ток. Устройство при этом, скорее всего, выйдет из строя.

Как влияет напряжение

В последовательном контуре цепи переменного тока напряжение определяется в результате векторного суммирования значений VR, VL и VC. При этом сумма каждых двух из определяемых значений напряжения представляется с поворотом осей на 90 градусов, причём по и против часовой стрелки. Если справедливо равенство VL=–VC, то конечные значения реактивных напряжений снимаются, поэтому напряжение от источника питания поступает исключительно на активное сопротивление. Другие изменения, когда короткое замыкание присутствует (справа) и отсутствует (слева), ясны из рисунка, приведенного ниже.

Импеданс в условиях короткого замыкания

Ток, который проходит в работающем последовательном контуре, определяется как сумма произведений напряжения, отнесённого к значениям импеданса. В случае резонанса токов значение импеданса минимально. Поэтому РТ в отличие от резонанса электронапряжений является безопасным для электроустановок. Электротоки большой величины возможны в ветвях лишь при наличии больших реактивных проводимостей, то есть, в случае использования больших батарей конденсаторов, мощных реактивных катушек. Ничего необычного в этом нет, поскольку электротоки в ветвях взаимно независимы, их определение основывается на законе Ома.

Изменения тока, протекающего в последовательном контуре

Амплитуда силы тока при резонансе в последовательном контуре является максимальной.

Значение электротока при возникновении резонанса

Рассматривая частотную характеристику последовательного резонансного контура, становится ясно, что фактическая величина тока в условиях РТ функционально зависит от ƒr. Вначале ток минимален, при IMAX =IR достигает наибольшего значения, а далее, когда значение ƒr стремится к своему максимальному показателю, вновь уменьшается.

Как следствие, фактическое значение напряжения на обмотках катушки индуктивности L и на пластинах конденсатора C может быть во много раз выше, чем напряжение, которое вырабатывается источником питания. Но при резонансе эти напряжения равны и направлены противоположно друг другу. Поэтому происходит суперпозиция напряжений, что обуславливает возможность практического применения резонанса токов в радиоэлектронных устройствах. Вместе с тем надо помнить, что последовательный резонансный контур действителен лишь для определённых значений ƒr.

Значение наибольшего напряжения в последовательной цепи переменного тока обязательно должно согласовываться с током по фазе. Фазовый угол между напряжением зависит от частоты, если напряжение питания неизменно, а для точки ƒr вообще равен нулю. Соответственно, мощность устройства будет наибольшей.

Фазовые углы при резонансе электротоков

Определить направление фазового угла можно по текущему значению частоты: если ƒ>ƒr, то фазовый угол следует отсчитывать против часовой стрелки, в противном случае (ƒr) — по часовой стрелке.

Когда RLC-цепь управляется от источника с постоянным напряжением, то фактическое значение тока линейно зависит только от полного сопротивления цепи. Таким образом, важным следствием резонанса токов является наибольшее значение мощности, которая требуется для работы устройства. При этом образуются две точки, которые называются точками половинной мощности. Для устройств, занимающихся формированием и обработкой аудиосигналов, эти точки располагаются в зонах, отстоящих на 3 дБ от наибольших частотных границ. При этом в качестве оси симметрии принимают линию, соответствующую 0 дБ.

Полоса пропускания при резонансе

Для половинной мощности параметр ƒL носит название нижней границы, а ƒН — верхней. Диапазон между этими точками представляет так называемую полосу пропускания (BW). Практически полоса пропускания — это интервал, где реализуется не менее 50% от наибольшей мощности устройства.

§56. Резонанс напряжений и резонанс токов

Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими.

При подсоединении колебательного контура к источнику переменного тока угловая частота источника ω может оказаться равной угловой частоте ω0, с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний ω0, возникающих в какой-либо физической системе, с частотой вынужденных колебаний ω, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту ω источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С — резонанс напряжений и при параллельном их соединении — резонанс токов. Угловая частота ω0, при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

Резонанс напряжений.

При резонансе напряжений (рис. 196, а) индуктивное сопротивление XL равно емкостному Хс и полное сопротивление Z становится равным активному сопротивлению R:

В этом случае напряжения на индуктивности UL и емкости Uc равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга. Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = XL—Xс становится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R. Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений UL и Uc, причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота ω0, при которой имеют место условия резонанса, определяется из равенства ωoL = 1/(ω0С).

Рис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Рис. 196. Схема (а) и векторная диаграмма (б) электрической цепи, содержащей R, L и С, при резонансе напряжений

Если плавно изменять угловую частоту ω источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при ωo), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

Рис. 197. Зависимость тока I и полного сопротивления Z от ω для последовательной (а) и параллельной (б) цепей переменного тока

Рис. 197. Зависимость тока I и полного сопротивления Z от ω для последовательной (а) и параллельной (б) цепей переменного тока

Резонанс токов.

Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ωoL = 1/(ωoC).

Рис. 198. Электрическая схема (а) и векторные диаграммы (б и в) при резонансе токов

Рис. 198. Электрическая схема (а) и векторные диаграммы (б и в) при резонансе токов

Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части цепи при резонансе I=U √(G 2 +(BL-BC) 2 )= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°).

Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний ω0 электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту.

Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов IL и Iс.

Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R1 и R2, будет равенство реактивных проводимостей BL = BC ветвей, в которые включены индуктивность и емкость.

Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1L и Iс равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.

Если в рассматриваемой параллельной цепи изменять частоту ωо источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения Imin = Ia при резонансе, а затем увеличивается.

В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии. В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е. такой контур должен быть подключен к источнику переменного тока соответствующей частоты ω0.

Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах.

Колебательный контур — важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *