есть 3 проводника одинаковой длины среза ,медь ,алюминий и их сплав у кого большее сопротивление? ответ обоснуйте
Сопротивление проводников определяется такой формулой:
R = po*L/S
Здесь po — это удельное сопротивление материала, берется из справочников.
L — длина провода, S — площадь сечения.
Обрати внимание — реально сопротивление зависит именно от этих параметров, а не от напряжения и силы тока в цепи.
Вычислять сопротивление по закону Ома R = U/I, конечно, можно, но не надо думать, что если мы поднимем силу тока, то сопротивление упадет. Оно останется, а напряжение поднимется.
В задаче сказано, что длина и сечение одинаковы, значит, всё определяется удельным сопротивлением.
Даже без всяких справочников, я знаю, что удельное распределяется так:
1) серебро — самое маленькое удельное сопротивление из всех металлов.
2) медь — чуть побольше
3) алюминий — еще больше
Очевидно, что в сплаве добавка меди к алюминию уменьшает его сопротивление, и чем меди в сплаве больше, тем ближе его сопротивление к чистой меди.
Поэтому самое большое сопротивление будет у алюминия.
Остальные ответы
У алюминия. Этот металл имеет большее сопр. чем медь
Электрическое сопротивление проводников
Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.
Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии.
Движущиеся электроны (от положительного полюса источника к отрицательному) ударяются о колеблющиеся ионы кристаллической решетки в проводнике и замедляют их движение
Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.
Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.
Омметр — прибор для измерения электрического сопротивления
Сопротивление обозначается латинскими буквами R или r .
За единицу электрического сопротивления принят ом в честь Георга Симона Ома (1784–1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.
Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм 2 при температуре 0° С.
Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4 ом.
Для измерения сопротивлений большой величины принята единица, называемая мегомом.
Один мегом равен одному миллиону ом.
Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.
Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению.
Обратной величиной электрического сопротивления является физическая величина, называемая электропроводностью.
Медные токоведущие шины в распределительном устройстве
Электрической проводимостью (электропроводностью) называется способность материала пропускать через себя электрический ток.
Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R , обозначается проводимость латинской буквой g.
Единицей электрической проводимости является сименс. Она была так названа в честь немецкого ученого Вернера Сименса (1816 — 1892).
Слово сопротивление также относится к пассивному электрическому компоненту, правильное название которого — резистор, характеризующийся одним свойством — электрическим сопротивлением.
Причина включения резистора в электрическую цепь обычно состоит в том, чтобы уменьшить величину электрического тока или получить определенное падение напряжения. Резистор часто неправильно называют сопротивлением и это может привести к двусмысленности . Величину сопротивления резисторов обозначают либо написанием числа на резисторе, либо, что чаще, цветными полосками.
Резисторы для электронных схем
Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления.
Величина электрического сопротивления определяется материалом, формой и температурой проводника. Величина сопротивления зависит от длины проводника (прямопропорционально), от содержания в поперечном сечении проводника (обратно пропорционально), от материала проводника (удельное электрическое сопротивление) и от температуры.
Так как сопротивление различных проводников зависит от материала, из которого они изготовлены, то для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 . Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.
Вещества, обладающие высоким удельным сопротивлением, являются изоляторами. Наиболее совершенным изолятором является янтарь, а также в качестве изоляторов применяют ПВХ, слюду, стекло, фарфор и т. д.
Хорошие проводники, такие как серебро, медь и алюминий, имеют самое низкое удельное сопротивление
Электрический провод с медной жилой
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь поперечного сечения проводника :
где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .
Площадь поперечного сечения круглого проводника вычисляется по формуле:
S = ( Пи х d 2 )/ 4
где Пи — постоянная величина, равная 3,14; d — диаметр проводника.
А так определяется длина проводника:
Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.
Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:
Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.
Поперечный разрез силового кабеля на 400 кВ с изоляцией из сшитого полиэтилена и медной жилой. Сечение кабеля — 1600 мм 2 . Такой кабель используется в воздушно-кабельной линии электропередачи 380 кВ в Берлине. Линия протяженностью 34 км построена в 2000-м году.
Это нужно запомнить:
1. Если к одному и тому же источнику электрического напряжения последовательно подключить проводники из разных материалов, но одинаковой длины и одинакового сечения, то мы будем измерять амперметром, что по каждому проводнику протекает электрический ток разной величины. Каждый материал оказывает различное сопротивление прохождению тока.
2. Если мы используем для измерения проводники из одного и того же материала, которые будут иметь одинаковый диаметр, но всегда разную длину, то амперметр будет определять разный проходящий ток для каждой длины проводника. Наибольший ток будет течь по самому короткому проводу.
3. Если мы используем для измерения проводники из одного материала одинаковой длины, но разного сечения, то мы будем измерять разные значения тока для каждого проводника с разным сечением. Наибольший ток будет течь по проводу с наибольшим сечением.
Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах
Еще одной причиной, влияющей на сопротивление проводников, является температура .
Сопротивление проводников и полупроводников зависит от температуры. Сопротивление проводников увеличивается с повышением температуры (положительный температурный коэффициент электрического сопротивления), а сопротивление полупроводников, углерода и некоторых специальных сплавов металлов с повышением температуры уменьшается (отрицательный температурный коэффициент электрического сопротивления). Электрическое сопротивление всегда имеет положительное значение. Хорошие проводники имеют малое сопротивление, плохие — высокое.
Различные проводники имеют разное сопротивление. Соединительные провода в электрической цепи имеют низкое сопротивление, чтобы как можно меньше уменьшить ток, проходящий через цепь. С другой стороны, резистивные проводники, используемые в нагревательных кабелях и электрических нагревательных приборах и резистивные нити накаливания лампочек имеют относительно высокое сопротивление, которые значительно нагреваются из-за своего высокого сопротивления при достаточном напряжении.
Нагревательный элемент для электрической плиты
Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.
Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры.
При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника.
С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .
Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.
Новый сверхпроводящий материал, который был открыт в 2021 году, зажатый между алмазами, может проводить электричество без электрического сопротивления при комнатной температуре
При очень низких температурах, близких к абсолютному нулю, колебательное движение молекул настолько мало, что свободные электроны движутся в них без всякого сопротивления. Ток, введенный в такой сильно охлаждаемый проводник, протекает непрерывно и без малейших потерь.
Постепенно охлаждая образцы платины и золота, голландский физик и химик Хейке Камерлинг-Оннес (1853 — 1926) обнаружил, что их электрическое сопротивление уменьшается. Когда он проделал свой опыт с ртутью, то при температуре около 4,27 К ее сопротивление стало резко падать, а при температуре около 4,22 К полностью исчезло. В последующие годы он открыл сверхпроводимость и в других металлах.
В 2015 году физик Института химии им. Макса Планка Михаил Еремец и его команда сжали водород и серу для достижения сверхпроводимости при -70°C. Спустя несколько лет две исследовательские группы экспериментировали с соединениями лантана и водорода при высоком давлении. Эксперименты показали, что сверхпроводимость возможна при более высоких температурах, таких как -23°C и -13°C, но некоторые эксперименты были успешными и при 7°C.
Что еще почитать:
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
У какого из проводников самое большое сопротивление
Нажмите на изображение чтобы увеличить.
Электрическое сопротивление
Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.
Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.
Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.
В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.
В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.
- Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
- Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка
Сопротивление провода
Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:
где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)
В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:
R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом
Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.
Свойства резистивных материалов
Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.
Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.
Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.
Что такое сопротивление?
Сопротивление — это величина, которая отражает противодействие протеканию тока в электрической цепи.
Сопротивление измеряется в омах, для международного обозначения которых используется греческая буква омега (Ω). Эта единица измерения названа в честь Георга Симона Ома (1784–1854 гг.), немецкого физика, который изучал взаимосвязь между напряжением, током и сопротивлением. Ему приписывают первую формулировку закона Ома.
Все материалы в некоторой степени сопротивляются прохождению току. Их разделяют на две большие категории:
- Проводники: Материалы, обладающие очень малым сопротивлением, в которых электроны могут свободно перемещаться. Примеры: серебро, медь, золото и алюминий.
- Изоляторы: Материалы с высоким сопротивлением, которые ограничивают поток электронов. Примеры: резина, бумага, стекло, дерево и пластмассы.
Обычно сопротивление измеряется для определения состояния компонента или цепи.
- Чем выше сопротивление, тем меньше сила тока. Одной из множества причин очень высокого сопротивления могут быть проводники, которые перегорели или повреждены вследствие коррозии. Все проводники выделяют некоторое количество тепла, поэтому перегрев часто связан с сопротивлением.
- Чем ниже сопротивление, тем выше сила тока. Возможные причины: изоляторы повреждены из-за перегрева или воздействия влаги.
Многие компоненты, такие как нагревательные элементы и резисторы, имеют фиксированное значение сопротивления. Эти значения часто указываются на паспортных табличках компонентов или в руководствах в качестве справочной информации.
Если указан допуск, измеренное значение сопротивления должно находиться в пределах указанного диапазона. Значительное изменение фиксированного значения сопротивления обычно указывает на проблему.
Само слово «сопротивление» может звучать неприятно, но в электротехнике сопротивление обеспечивает определенные преимущества.
Примеры. Прохождение тока через небольшие нагревательные элементы тостера должно быть затруднено, чтобы выделялось тепло для поджаривания хлеба. В лампах накаливания старого типа ток проходит через волокна, достаточно тонкие для образования свечения.
Сопротивление не может быть измерено в рабочей цепи. Соответственно, технические специалисты, осуществляющие поиск и устранение неисправностей, часто рассчитывают сопротивление по измеренным значениям напряжения и тока в соответствии с законом Ома:
То есть В = А × Ом. R в этой формуле означает сопротивление. Если сопротивление неизвестно, формулу можно преобразовать следующим образом: R = E/I (Ом = В/А).
Примеры. В цепи электрического обогревателя, как показано на двух рисунках ниже, для определения сопротивления измеряют значения напряжения и тока в цепи, а затем применяют закона Ома.
В первом примере общее нормальное сопротивление цепи (эталонное сопротивление) равно 60 Ом (240 ÷ 4 = 60 Ом). Сопротивление 60 Ом позволяет определить состояние цепи.
Во втором примере при понижении силы тока с 4 А до 3 А сопротивление цепи увеличилось с 60 Ом до 80 Ом (240 ÷ 3 = 80 Ом). Прирост значения общего сопротивления в 20 Ом может быть вызвано ослабленным или загрязненным соединением или разомкнутым участком катушки. Разомкнутые участки катушки увеличивают общее сопротивление цепи, в результате чего понижается сила тока.
Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.