Примеры тестов на лабы по БЖД / Тест 4))
б) удельного коэффициента; г) всех вышеперечисленных коэффициентов.
8) Электрическое соединение металлических нетоковедущих частей электроустановок с заземленной нейтралью вторичной обмотки трехфазного понижающего трансформатора (генератора), которые могут оказаться под напряжением, — это
б) защитное заземление;
г) защитное отключение.
9) В сети с занулением нужно различать:
а) нулевой защитный проводник;
б) нулевой рабочий проводник;
в) всё вышеперечисленное.
10) Защитный эффект зануления заключается
а) в уменьшении длительности замыкания на корпусе;
б) в увеличении длительности замыкания на корпусе;
Разница заземления и зануления
Заземление и зануление служат для предотвращения ударов электрического тока. Но между занулением и заземлением есть существенная разница, которая заключается не только в способе установки.
Разница зануления и заземления. Суть защитных установок
Заземление и зануление отличаются друг от друга по принципу работы:
- заземление применяется для сетей с изолированной нейтралью. Необходимо, для того чтобы снизить напряжение
- зануление применяется там, где установлена глухозаземленная нейтраль. Это нужно для того, чтобы срабатывали автоматические выключатели при попадании тока в нетоковедущую часть устройства. Представляет собой соединенные части из металла, которые не находятся под напряжением
Другие исполнители на Юду
Рейтинг: 4,9
Чтобы лучше разобраться в работе этих защитных систем и понять разницу между ними, нужно поговорить о каждом из них отдельно.
Принцип работы заземления, виды систем заземления
Заземляющее устройство образуется заземлителем с проводником или системой проводников. Они соединяют между собой токопроводящие участки приборов и землю. Выделяют три вида систем заземления:
- рабочие – поддерживают установленный режим работы установок в нормальных и аварийных ситуациях
- защитные – защищают людей и животных от удара током после повреждения фазных проводов
- грозозащитные – с их помощью заземляют молниеотводы
Заземлители бывают естественные (трубопроводы, обсадные трубы, но ни в коем случае не отопительные и водопроводные трубы) и искусственные (специально сооруженные конструкции, к которым относится уголковая сталь, стальные стержни).
Заземления классифицируются по количеству рабочих и защитных проводников:
- TN-C – в наше время применяется все реже и встречается только в старых постройках; предназначались для трехфазных четырехпроводных сетей. Данная система не обеспечивает нужной безопасности
- TN-C-S – к такой системе переходят от TN-C тогда, когда в старой постройке планируется установка новой техники, в частности компьютерной. Уровень необходимой безопасности довольно высок
- TN-S – нулевой и рабочий проводники прокладывают отдельно, соединив токопроводящие части электрической установки
- TT – в этой системе с землей связаны открытые токоведущие участки
- IT – в отличие от TT изолирована от земли, благодаря чему утечка тока снижается максимально
Принцип работы зануления
Если дополнительно установить к занулению УЗО, это приведет к выключению одного из элементов, действующих наиболее быстро, или одновременному срабатыванию двух устройств. Нулевой провод всегда должен находиться в исправности. В случае если этот провод оборвется, в зануленных корпусах возрастет напряжение. Поэтому монтаж выключателей в нулевой провод запрещен.
В чем разница между занулением и заземлением
Основная разница заземления и зануления – то, что в заземлении уровень безопасности обеспечивается снижением напряжения тока, которое происходит очень быстро, а в занулении – от отключения поврежденного участка электрической сети. Поэтому заземление безопаснее и надежнее зануления. Также разница между заземлением и занулением состоит в том, что монтаж зануления – более тонкая и сложная работа, в то время как для установки заземления не требуется иметь особые навыки.
Как произвести монтаж заземления или зануления, можно увидеть на видео. Также в видео более подробно рассказано о разнице между занулением и заземлением.
Что такое заземление и зануление
Какая разница между заземлением и занулением – наиболее распространенный вопрос. В данной статье мы постараемся пояснить, что такое зануление и заземление, а также укажем разницу между ними.
Чем отличается земля от нуля
Начнем с того, что коротко поясним основное отличие. Что такое заземление? В общем, это несколько металлических штырей, углубленных в землю на определенном расстоянии между друг другом.
Специальный провод соединяет их с корпусом электротехники. Таким образом, при пробое потенциал рассеивается в земле, а сам корпус остается вне напряжения.
В случае зануления корпус соединяют с нулем, то есть с нулевым проводом в трехфазной сети. Как результат, в случае пробоя, потенциал превращается в короткое замыкание, и аварийная система просто выключает напряжение.
Что же лучше
Согласно нормам ПУЭ зануление должно использоваться исключительно в промышленных целях, и не рекомендовано для обустройства на бытовом уровне. Но стоит сказать, что у нас очень часто в жилых домах устанавливается именно такая система. Как правило, это происходит от незнания, или же просто из-за лени либо за неимением иного выхода.
И не стоит особо полагать, что в новостроях все оборудовано по правилам. В таком случае желающие могут самостоятельно оборудовать заземление. Конечно, если вы живете на 16 этаже, а сам дом не предусматривает ничего кроме зануления, то решить ситуацию вряд ли получится без большой мороки.
Немного о заземлении
Что это такое, описано выше. Хотим еще добавить, что применяется оно исключительно в сетях с изолированной нейтралью. Таким образом, ток с оборудования уходит в землю.
Однако стоит взять на заметку, что такая система еще увеличивает аварийный ток замыкания. Потому, если использовать заземлитель с слишком высокими показателями сопротивления, то ток замыкания может быть мал, а установка в случае аварийной ситуации останется под напряжением, что будет представлять угрозу для людей.
Особенности зануления
Отдельно отметим, что в такой системе необходимо следить за исправностью нулевого провода. Иначе при его обрыве, все устройства окажутся подключенными к фазе, в результате чего на корпусах возникнет напряжение.
Таким образом, зануление и заземление нельзя называть равнозначными альтернативными. А наиболее эффективной системой среди них можно назвать все же заземление. Впрочем, не всегда существуют все условия для того, чтобы оборудовать такую систему.
Однако и то и другое имеет свои преимущества и недостатки с которыми необходимо считаться при проектировании системы электробезопасности. В случае необходимости заказать расчет и монтаж системы можно поручить специализированной компании, такой как «МЗК-Электро», и быть уверенным в надежности исправности систем, а значит, в собственной безопасности.
Системы молниезащиты
- Что такое молниезащита?
- Громоотвод
- Молниеотвод
- Молниеприемник
- Токоотвод
- Заземление
- Устройства защиты от перенапряжений
- Активная система молниезащиты
- Зонная концепция молниезащиты
- Система уравнивания потенциалов
Расчет стоимости
Наши объекты
Асфальтосмесительная установка (АСУ) Ammann Uniglobe 320 Quick Адрес объекта: Московская область, Ногинский район, владение вблизи дер. Ивашево Вид работ: монтаж «под ключ» системы молниезащиты и заземления АСУ Комплектующие: J. Propster, ОBO Bettermann (Германия) , Nordwerk (РФ) Исполнение: защита выполнена с помощью молниеотводов isFang, установленных на металлоконструкциях, и отдельно стоящей молниеприёмной мачты, изолированных токоотводов isCon Pro+ 75 SW, подключенных к заземляющему проводнику из полосовой стали, который в грунте объединен с контуром из горизонтального и вертикальных заземлителей
Акция на всю молниезащиту — скидка от 10 до 20% на комплектующие
30 января 2024
Беспрецедентная акция на все оборудование для молниезащиты и заземления — успей купить до окончания зимы со скидкой до 20% импортные комплектующие
Зануление в двухпроводной сети когда нет заземления. Мысли вслух
Многим конечно же эта статья не понравится как с технической точки зрения, так и со стороны безопасности. Уже вижу как кто-то полез в ПУЭ или ТКП (у меня в Беларуси оно называется «Технический Кодекс установившейся Практики»), что бы сказать мне, что так делать нельзя. Оно скорее всего так и есть, но написать статью хочется. Да и заработанную карму потратить на этом сайте негде (в смысле применить эти набранные очки с пользой для себя или кого-то ещё).
Всё что будет написано ниже не стоит воспринимать как призыв к действию. Воспринимайте это как рассуждение, разминку для мозга.
Речь пойдёт о двух известных проблемах в жилых домах где нет отдельного заземляющего проводника даже в виде деления PEN на PE и N в ВРУ здания:
- Как заземлиться где нет «земли»?
- Защита при отгорании магистрального нулевого провода
Без защитного проводника
Единственным вариантом защиты человека от поражения электрическим током при попадании фазы на не заземлённый (и не занулённый) корпус эл.прибора возможен с электромеханическим УЗО. Есть ещё СУП (Система Уравнивания Потенциалов), но если она нормально не заземлена это может нести ещё больший риск.
Здесь всё просто, при протекании тока через условный пол — тело человека — корпус электроприбора УЗО сработает от разности токов втекающих и вытекающих по нулю и фазе. То есть не важно по какому пути пойдёт эта утечка тока: фаза-пол, ноль-пол или фаза и отгоревший ноль — пол — УЗО сработает в любом из этих вариантов. Важно одинаковое направление этих токов.
Но помимо безопасности существуют трудности которые порой носят непреодолимый характер:
1. Электроприбор «кусается» из-за его конструктивных особенностей (конденсаторы в блоке питания).
2. Электроприбор изначально не «кусался», но начал «кусаться», при этом он как и прежде работает. Переворачивание вилки в розетке не помогает. Денег, времени и пр. на ремонт нет, хочется только устранить «кусания» или даже «подёргивания» и пользоваться пока окончательно не сломается.
3. Электроприбор не «кусается», однако из-за наличия «гуляющего» напряжения на корпусе не хочет нормально работать (например длинный USB провод от компьютера к принтеру, гудение в динамиках звуковых усилителей, плохой приём радиосигнала и др).
Что бы избавиться от этих проблем, многие жертвуют безопасностью подсоединяя корпуса эл.приборов на прямую к «заземлению» в виде труб отопления, арматуры, или если позволяют условия: закопав металлический штырь в землю. Опасность этих способов «заземления» давно известна. На определённых участках трассы трубы могут быть соединены пластиком, а не металлом, иметь большое сопротивление с заземлением. Токи утечки от электроприборов способствуют быстрой коррозии труб. При попадании фазы на корпус автоматический выключатель или УЗО может не сработать если протекаемые токи будут малы. Появится риск поражения эл.током не только того кто сделал такое заземление, но и всех тех кто волею случая оказался в зоне поражения (сантехник меняющий трубу или соседи этажом ниже и выше).
Зануление от щита
Здесь необходимо сделать отступление.
Хоть в наших электросетях ноль и соединён с контуром заземления на ТП, из-за неравномерной токовой нагрузки по фазам, а так же большой протяжённости кабельных линий, у удалённых потребителей электроэнергии напряжение между нулём и заземлением может составлять больше десятка вольт. Падение напряжения есть и в нулевом проводе!
Стоя на мокром бетонном полу и касаясь руками к корпусу занулённого водонагревателя или металлического крана соединённого металлическими шлангами, вы определённо сможете почувствовать это напряжение. А если соединить нулевой провод с закопанными в землю металлическими трубами или прочими конструкциями, по ним может пойти не слабый такой ток в несколько ампер.
То есть даже теоретически не каждым нулевым проводом можно сделать «зануление» если оно намертво прикручено в ВРУ с разделением там же PEN на PE и N. Такие случаи бывают, например когда у здания нет своего контура заземления. Между настоящей землёй (точка соединения на ТП контура заземления и отходящего нулевого провода) и разделённой «землёй» в ВРУ здания возникнет потенциал.
Если ноль не «кусается», то можно пофантазировать на тему как можно им защитится на время пока он цел. А что бы знать что он цел, необходимо привязаться к некой точке у которой хотя бы в теории будет неизменный нулевой электрический потенциал (опорное напряжение) относительно земли. Этой точкой может стать место присоединения нулевого провода к шине заземления на ТП, а сама земля быть как бы идеальным проводником на котором условно нет падения напряжения на участке «земля ТП — земля подключенного здания». Вот к примеру цитата одного комментария на ютубе на эту же тему
… есть такое понятие ( статистический(искусственный 0), если его использовать относительно естественного 0 можно решить это проблему гораздо проще и дешевле). Разница между искусственным 0 и естественным достигает при перекосах и обрывах фаз от 0,5 до 10 в. Проверено опытным путём.
Важным условием для такого «опорного заземления» — это возможность пропустить через себя ток величиной достаточной для срабатывания защиты, при этом возникшее напряжение между «опорным заземлением» и «естественной землёй» не должно превысить опасных значений, к примеру 30 вольт.
Где найти такое опорное заземление в квартире — большой вопрос. Трубы отопления, водопровода и газа откидываем по причинам описанным выше. Вариант подключения к СУП в санузле, но неизвестно как это СУП соединено между собой и другими квартирами, опасно. Получается, единственный вариант — это арматура в стенах и потолке, сваренная между собой и имеющая сопротивление с настоящей землёй менее 1 кОм. Хотя в кирпичном или деревянном здании и этого может не быть.
Но если есть, тогда можно провести испытание её «качества». Взять вольтметр и измерить напряжение между нулём в розетке и арматурой в стенке. Если оно не равно нулю, а к примеру 3 и более вольт, закоротив ноль и арматуру через предохранитель на 100мА, этот предохранитель должен сгореть (при условии, что сопротивление между арматурой и настоящей землёй маленькое). Либо если напряжение между нулём и арматурой близко к нулю, подцепить последовательно в цепь батарейку типа «крона», добавив 9 вольт.
Сгоревший предохранитель — как индикатор пройденного теста «опорного заземления».
Для теоретического эксперимента понадобится четырёхполюсное электромеханическое УЗО или Диф автомат типа AC на ток утечки 30мА, как самое распространённое.
Ориентируясь на то, что схема защиты работает относительно «опорного заземления» рисую первую схему.
Схема схожа со схемой подключения УЗО в двухпроводной сети, с той лишь разницей, что «защитный» нулевой проводник взятый с корпуса щитка у нас так же подключен через третий контакт УЗО, но снизу. Ситуации:
А. Ноль в щитке целый. При возникновении токов утечки с корпуса эл.прибора на фазу или ноль, УЗО заметит разницу токов втекающих и вытекающих, защита сработает.
Б. Ноль не приходит на корпус щитка (обрыв). На корпусе напряжение относительно «опорного заземления». Если ток пойдёт по цепочке «защитный ноль — корпус — тело — пол» УЗО отреагирует и на эту утечку.
А если нужно, что бы УЗО не срабатывало на токи утечки с нуля на корпус или с фазы на корпус? Садим защитный ноль на верхние контакты УЗО. Теперь токи суммируются и вычитаются по другому.
А. Ноль в щитке целый. При возникновении токов утечки с корпуса эл.прибора на фазу или ноль УЗО не заметит разницу токов втекающих и вытекающих, УЗО не сработает.
Б. Ноль не приходит на корпус щитка (обрыв). На корпусе напряжение относительно «опорного заземления». Если ток пойдёт по цепочке «защитный ноль — корпус — тело — пол» УЗО отреагирует на эту утечку.
Защита при обрыве нуля
Четвёртый контакт УЗО можно использовать как детектор обрыва нуля. Опять же используя наше «опорное заземление». Как только в щитке на защитном нулевом проводе появится напряжение более 30 вольт относительно «опорного заземления» появится ток утечки и защита сработает.
Комментарий из интернета
Кстати, в далеком 2000г. в бутике на Подоле в Киеве (дореволюционный дом, воздушный ввод) мне удалось заставить УЗО реагировать на обрыв ноля. Я поставил между нолем и чистой землей (сам сделал контур) резистор 1кОм, при нормальном напряжении на ноле 5В утечка с ноля 5мА, при обрыве ноля на нем хотя бы 50В, утечка 50мА, УЗО отключалось.
Минус резистора — ток в несколько миллиампер при малых напряжениях между землёй и нулём, то есть может всегда висеть 10-15мА, что не есть хорошо для всего остального что подключено к УЗО которое может сработать например при 17-20мА.
Варистор имеет не совсем хорошую ВАХ, сопротивление при пробитии падает не резко, в добавок если даже и ограничить ток резистором, всё равно у него ограниченное количество срабатываний.
Газовые разрядники от 75вольт, это слишком много. Сопротивление зависит от приложенного напряжения.
Гораздо проще собрать схему на диодах, стабилитроне и транзисторе. Можно и на двух мощных стабилитронах, но их сложнее найти в продаже.
Условие работы схемы:
- Минимальное напряжение стабилизации стабилитрона Uст.мин должно быть больше чем амплитудное значение напряжения между «опорной землёй» и защитным нулём.
- Коэффициент усиления транзистора h21э должен быть не более 20 — 40. Что бы единицы микроампер на базе не превратились в десятки миллиампер на коллекторе. Транзистор обычный биполярный.
- Резистор ограничивающий ток схемы подбирается из условия, что при 30V между «опорной землёй» и защитным нулём должен протекать ток 30мА.
Когда напряжение между «опорной землёй» и защитным нулём меньше Uст.мин ток через схему составляет единицы микроампер. При увеличении напряжения до 30 и более вольт, ток через схему резко увеличится до нужных нам 30 и более миллиампер.
Всё вместе будет выглядеть так
Если без паяния схем, то можно поставить простую защиту от перенапряжения между рабочим нулём и фазой. При отгорании нуля в щитке и появлении более 250 вольт вместо 220, через четвёртый контакт УЗО потечёт ток, защита так же сработает.
Вариаций схем на эту тему наверно можно придумать много.
Учитывая что в продаже есть электронные реле напряжения или аналогичные механические расцепители для УЗО и автоматов от производителей электротехнической продукции, такое «кулибинство» возможно свести на нет или до минимума. Главное знать, что такие аппараты защиты существуют и иметь общее представление где и как их применяют.
P.S. Важное замечание с обсуждения на одном форуме
что будет, если ты применишь 4-х полюсное УЗО, которое соединяет через свои контакты батарею с нулём в щите, когда на батарее, но не твоей, а соседской, появится желающий использовать её в виде нуля? Это к тому, что тогда через контакты твоего УЗО потечёт куда больший ток, чем предполагалось изначально
Здесь важен такой момент, что «защитный ноль» на корпусе может быть электрически связан с водопроводными трубами, например при соединении стиральной машины или водонагревателя шлангами к трубам (не обязательно металлическими). По защитному нулю, через корпус эл.прибора по шлангам на батарею пойдёт уравнивающий ток, УЗО сработает, но и токи даже в единицы миллиампер — не есть хорошо. Плюс ситуации, описанные в начале статьи.
Для лучшего понимания как работают устройства защиты по дифференциальному току и их необычного применения, крайне рекомендую к просмотру цикл видео «Устройства дифференциального тока против обрыва, нагрева и дуги» автора ID — Vladimir Melnikov (на хабре Vladimir Melnikov).