Какой способ заземления нейтрали называют компенсированной нейтралью
Перейти к содержимому

Какой способ заземления нейтрали называют компенсированной нейтралью

  • автор:

Режимы работы нейтралей трансформаторов системы электроснабжения

Режимы работы нейтралей трансформаторов

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.

При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали .

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Нейтраль сети — это совокупность соединенных между собой нейтральных точек и проводников, которая может быть изолирована от сети либо соединена с землей через малые или большие сопротивления.

Используются следующие режимы нейтрали:

  • глухозаземленная нейтраль,
  • изолированная нейтраль,
  • эффективно заземленная нейтраль.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.

Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой , а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью .

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью .

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью .

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью .

Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания ) называется сеть с эффективнозаземлённой нейтралью .

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

Напряжение, кВ Режим нейтрали Примечание
0,23 Глухозаземленная нейтраль Требования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69 Изолированная нейтраль Для повышения надежности электроснабжения
3,3
6
10
20
35
110 Эффективно заземленная нейтраль Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
220
330
500
750
1150

Системы с глухозаземленной нейтралью — это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.

Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью . При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).

Режимы нейтрали трехфазных систем

Режимы нейтрали трехфазных систем: а — заземленная нейтраль, б — изолированная нейтраль

Изолированной нейтралью называется нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.

Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов — до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.

Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.

Основное преимущество режима изолированной нейтрали — способность подавать энергию электроприемникам и потребителям при однофазном замыкании на землю.

Недостатком этого режима являются трудности о обнаружении места замыкания на землю.

Повышенная надежность режима (т.е. возможность нормальной работы при однофазных замыканиях на землю, которые составляют значительную часть повреждений электрооборудования) изолированной нейтрали обуславливает обязательное его применение при напряжении выше 1 кВ до 35 кВ включительно, поскольку эти сети питают большие группы электроприемников и потребителей.

С напряжения 110 кВ и выше применение режима изолированной нейтрали становится экономически невыгодным, так как повышение напряжения относительно земли с фазного до линейного требует существенного усиления фазной изоляции. Применение режима изолированной нейтрали до 1 кВ допускается и оправданно при повышенных требованиях к электробезопасности.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Компенсированная нейтраль — что это такое?

Смысл схемы компенсированной нейтрали заключается в реактивном сопротивлении, согласованном с общей емкостью сети между фазой и землей, устанавливаемыми между нейтралью и землей таким образом, чтобы при замыкании на землю значение тока повреждения было близко к нулю:

Компенсированная нейтраль - 1

Рисунок 1 — Замыкание на землю в сети с заземлением через компенсирующее реактивное сопротивление

Преимущества схемы с компенсированной нейтралью:

  • Cхема позволяет уменьшить ток повреждения даже если значение емкости между фазой и землей велико: происходит спонтанное гашение неустойчивых замыканий на землю.
  • В месте повреждения напряжения прикосновения ограничиваются.
  • Обеспечивается поддержание рабочего состояния оборудования несмотря на наличие устойчивого повреждения.
  • Сигнал о первом повреждении выдается при определении прохождения тока через катушку.

Недостатки схемы с компенсированной нейтралью:

  • Затраты на катушку могут быть высокими в связи с необходимостью изменять значение реактивного сопротивления для адаптации его к условиям процесса компенсации.
  • В период действия повреждения необходимо убедиться в том, что циркулирующий ток нулевой последовательности не представляет опасности для людей и оборудования.
  • Имеется значительный риск возникновения переходного перенапряжения в сети.
  • Требуется присутствие персонала, осуществляющего контроль работы оборудования.
  • Требуется применение сложной селективной защиты при первом повреждении.

Система с компенсированной нейтралью обеспечивает компенсацию емкостного тока сети.

В действительности, ток повреждения составляет сумму токов, которые проходят в следующих цепях:

  • цепь заземления через реактивное сопротивление;
  • цепи емкостей неповрежденных фаз относительно земли;

Происходит взаимная компенсация этих токов, поскольку:

  • один ток является индуктивным (цепь заземления);
  • другой ток является емкостным (цепи емкостей неповрежденных фаз). Таким образом, в противофазе эти токи взаимно компенсируются.

На практике за счет малого сопротивления катушки возникает слабый резистивный ток со значением в несколько ампер (см. рис. 2).

Компенсированная нейтраль - Векторная диаграмма токов при замыкании на землю

Рисунок 2 — Векторная диаграмма токов при замыкании на землю

Защита

Методика обнаружения повреждения основана на использовании активной составляющей тока нулевой последовательности.

В действительности, повреждение вызывает циркуляцию тока нулевой последовательности во всей сети, но при этом только в поврежденной цепи есть резистивный ток нулевой последовательности. Кроме того, при настройке устройств защиты необходимо учитывать возможность возникновения самоустраняющихся повторяющихся повреждений (возвращающиеся отказы). Когда реактивное сопротивление заземления и емкость сети согласованы

  • ток повреждения имеет минимальное значение;
  • является резистивным;
  • повреждение самоустраняется.

При этом компенсирующее реактивное сопротивление называется дугогасительной катушкой или катушкой Петерсена.

Применение

Данный способ заземления нейтрали применяется в распределительных сетях среднего напряжения с высоким значением емкостного тока Ic.

  • 10.Апр.2015 — Радиальная схема электроснабжения — что это? Пример
  • 10.Апр.2015 — Глухозаземленная нейтраль — что это? Схема, преимущества
  • 10.Апр.2015 — Трехфазное короткое замыкание между проводами фазы
  • 10.Апр.2015 — Устойчивость оборудования к короткому замыканию КЗ
  • 10.Апр.2015 — Компенсации параметров ЛЭП в электрических сетях энергосистемы

Нейтраль трансформатора

Нейтраль трансформатора точка соединения фазных обмоток при схеме подключения «звезда». Разность потенциалов в этой точке равна нулю. Разность потенциалов между концами фаз и нейтралью соответствует линейному напряжению между фазами.

При замыкании на землю изменяется симметрия электрической системы; изменяется значение напряжения между землей и фазами; образуются токи замыкания на землю, возникает перенапряжение в сети. Степень искажения симметрии зависит от выбранного режима присоединения нейтрали.

Выбранный режим должен обеспечивать безопасность обслуживающего персонала, экономичность электроустановки, бесперебойность электроснабжения потребителей и надежность работы.

Нейтрали трансформаторов электрических установок заземляются непосредственно, либо через активные или индуктивные сопротивления, либо изолируются от земли.

  • Глухозаземленная нейтраль присоединяется к заземляющему устройству непосредственно.
  • Изолированная нейтраль не соединена с заземлением.
  • Резонанснозаземленная (компенсированная) нейтраль соединяется через индуктивное сопротивление (реактор) компенсирующее ёмкостный ток сети.
  • Резистивнозаземленная нейтраль заземляется через активное сопротивление (резистор).
  • Сетью с эффективнозаземленной нейтралью считается сеть напряжением свыше 1 кВ, коэффициент замыкания на землю которого не более 1,4.

Заземляющее устройство, к которому присоединяется нейтраль трансформатора или генератора должно иметь сопротивление не выше 4 Ом для электроустановок с напряжением 380/220В.

В отличие от защитного заземления, заземление нейтрали трансформатора или генератора называется рабочим заземлением.

Для выбора метода заземления нейтрали не утверждены стандарты. При проектировании электрических систем, энергетических установок и линий необходимо руководствоваться практикой эксплуатации существующих установок, директивными рекомендациями по предотвращению перенапряжений и параметрами электрооборудования.

10. Способы заземления нейтрали в электрических сетях напряжением выше 1000 в. Области применения сетей с различными режимами заземления нейтрали.

Электротехнические установки напряжением выше 1000 В разделяются на:

установки с большими токами замыкания на землю, в которых ток однофазного замыкания превышает 500 А;

установки с малыми токами замыкания на землю, в которых ток однофазного замыкания менее 500 А.

К установкам с большими токами замыкания на землю относятся электротехнические установки с нейтралями, присоединенными непосредственно или через малые сопротивления.

К установкам с малыми токами замыкания на землю относятся установки с нейтралями, присоединенными к заземляющим устройствам через аппараты, компенсирующие емкостный ток сети на землю, или через аппараты, имеющих большое сопротивление.

В установках с глухо заземленной нейтралью всякое замыкание на землю является коротким замыканием и сопровождается большим током к.з.

В установках с изолированной нейтралью замыкание одной из фаз на землю не является коротким.

Применение глухого заземления нейтрали стабилизирует напряжение фаз по отношению к земле и в связи с этим уменьшает величины перенапряжений и позволяет снижать уровень изоляции. Одновременно глухое заземление нейтрали уменьшает сопротивление нулевой последовательности и ток однофазного к.з. может стать больше тока трехфазного к.з. Для уменьшения тока однофазного к.з. применяют способ разземления части нейтралей сети. Однако на разземленной части нейтралей появляется значительный потенциал. Это следует учитывать в связи с тем, что на современных трансформаторах изоляция вывода нейтрали выполняется ниже изоляции фазных выводов.

При применении глухого заземления нейтрали ток однофазного к.з. достигает нескольких десятков килоампер и для ограничения размеров повреждения током к.з. требуется возможно более быстрое отключение повреждения.

Кроме того, при замыканиях на землю возникают значительные нескомпенсированные магнитные потоки нулевой последовательности, которые необходимо учитывать вследствие их влияния на установки связи.

Рис.7.1.Трехфазная сеть с глухозаземленной нейтралью

В установках с изолированной нейтралью при замыкании на землю одной из фаз треугольник напряжений остается практически неизменным, а электроснабжение не прерывается. Допускается возникшее замыкание не отключать в течение 2 ч для отыскания повреждения и принятия мер по обеспечению электроснабжения потребителей по другой цепи. В месте замыкания в течение этого времени проходит емкостный ток, определяемый емкостями фаз сети относительно земли. Если ток невелик, он не приводит к значительным нарушениям изоляции. При достаточно большом токе возможно повреждение изоляции кабеля и однофазное замыкание может перейти в междуфазное короткое замыкание.

Рис.7.2.Трехфазная сеть с изолированной нейтралью: а) нормальный режим; б) режим замыкания фазы А на землю.

Для снижения величины емкостного тока в месте замыкания применяются компенсирующие устройства: заземляющие реакторы, включаемые в нейтраль трансформатора, и трехфазные заземляющие трансформаторы. В этом случае в контуре замыкания создается резонанс токов — емкостного и индуктивного.

Суммарная мощность дугогасящих реакторов для сетей определяется из выражения

где n — коэффициент, учитывающий развитие сети; ориентировочно можно принять n=1,25; Ic — полный ток замыкания на землю, А; Uф — фазное напряжение, кВ.Согласно ПУЭ емкостный ток не должен превышать следующих величин:

U, кВ 6 10 15-20 30

Iз, А 30 20 15 10

Применение аппаратов компенсации емкостного тока на землю способствует быстрому гашению дуги в месте замыкания, поэтому компенсирующие аппараты называют еще дугогасящими. Сеть с компенсацией емкостного тока называют сетью с компенсированной нейтралью.

Рис.7.3.Трехфазная сеть с компенсированной нейтралью

В настоящее время в России вопрос о режиме нейтрали решается следующим образом.

Сети с номинальными напряжениями 3-35 кВ работают с изолированной или компенсированной нейтралью (с малыми токами замыкания на землю).

Сети с номинальными напряжениями 110 кВ и выше работают с глухозаземленной нейтралью (с большими токами замыкания на землю).

Такой выбор режима нейтрали объясняется следующим образом:

1) в сетях с малыми токами замыкания на землю обеспечивается возможность сохранять в работе линию с замыканием на землю в течение некоторого времени, достаточного для отыскания места повреждения и вклюяения резерва;

2) снижается стоимость заземляющих устройств, что очень важно по экономическим соображениям из-за большого количества установок 3-35 кВ;

3) уменьшается на треть число трансформаторов тока и сокращается число защитных реле;

4) в сетях с большими токами замыкания на землю стоимость изоляции при напряжении 110 кВ и выше значительно снижается при глухом заземлении нейтрали, а увеличение стоимости заземляющих устройств мало сказывается из-за небольшого числа установок по сравнению с числом установок 3-35 кВ;

5) надежность работы сетей с глухим заземлением нейтрали возрастает, так как поврежденный участок немедленно отключается . В силу того, что большинство замыканий после отключения самоустраняется, в этих сетях оказывается особенно эффективным применение устройств автоматического повторного включения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *