Коллекторный электродвигатель постоянного тока
Коллекторный электродвигатель постоянного тока — вращающаяся электрическая машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию, у которой хотя бы одна из обмоток, участвующих в основном процессе преобразования энергии, соединена с коллектором.
Конструкция коллекторного электродвигателя постоянного тока
Статор (постоянный магнит)
Рисунок 1 — Электродвигатель постоянного тока с постоянными магнитами в разрезе
Статор — неподвижная часть двигателя.
Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.
Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.
Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.
Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].
Типы коллекторных электродвигателей
По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.
Коллекторный двигатель с постоянными магнитами
Схема коллекторного двигателя с постоянными магнитами
Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.
-
Преимущества:
- лучшее соотношение цена/качество
- высокий момент на низких оборотах
- быстрый отклик на изменение напряжения
-
Недостатки:
- постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства
Коллекторный двигатель с обмотками возбуждения
-
По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
- независимого возбуждения
- последовательного возбуждения
- параллельного возбуждения
- смешанного возбуждения
Схема независимого возбуждения
Схема параллельного возбуждения
Схема последовательного возбуждения
Схема смешанного возбуждения
Двигатели независимого и параллельного возбуждения
В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].
В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.
-
Преимущества:
- практически постоянный момент на низких оборотах
- хорошие регулировочные свойства
- отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
-
Недостатки:
- дороже КДПТ ПМ
- двигатель выходит из под контроля, если ток индуктора падает до нуля
Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].
Двигатель последовательного возбуждения
В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа < Iном) и магнитная система двигателя не насыщена (Ф ~ Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:
- где M – момент электродвигателя, Н∙м,
- сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
- Ф – основной магнитный поток, Вб,
- Ia – ток якоря, А.
С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].
Рабочая характеристика двигателя последовательного возбуждения
Электромеханическая характеристика двигателя последовательного возбуждения
Важно: Недопустимо включать двигатели последовательного возбуждения в сеть в режиме холостого хода (без нагрузки на валу) или с нагрузкой менее 25% от номинальной, так как при малых нагрузках частота вращения якоря резко возрастает, достигая значений, при которых возможно механическое разрушение двигателя, поэтому в приводах с двигателями последовательного возбуждения недопустимо применять ременную передачу, при обрыве которой двигатель переходит в режим холостого хода. Исключение составляют двигатели последовательного возбуждения мощностью до 100—200 Вт, которые могут работать в режиме холостого хода, так как их мощность механических и магнитных потерь при больших частотах вращения соизмерима с номинальной мощностью двигателя.
Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.
-
Преимущества:
- высокий момент на низких оборотах
- отсутствие потерь магнетизма со временем
-
Недостатки:
- низкий момент на высоких оборотах
- дороже КДПТ ПМ
- плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
- двигатель выходит из под контроля, если ток индуктора падает до нуля
Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.
Двигатель смешанного возбуждения
Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].
-
Преимущества:
- хорошие регулировочные свойства
- высокий момент на низких оборотах
- менее вероятен выход из под контроля
- отсутствие потерь магнетизма со временем
-
Недостатки:
- дороже других коллекторных двигателей
Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.
Характеристики коллекторного электродвигателя постоянного тока
Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.
Механические характеристики коллекторных двигателей постоянного тока
Основные параметры электродвигателя постоянного тока
Постоянная момента
Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:
,
- где Z — суммарное число проводников,
- Ф – магнитный поток, Вб [1]
Коллекторные однофазные
Разработаны специально для применения в зернодробилках «Нептун», «ГринТех», «Хрюша», «Сельчанин», «Форсаж», «Сибирь» и других машин.
Электродвигатель для зернодробилок (коллекторный) ДК 105-550-10М
Предназначены для измельчителей зерна.
Электродвигатель для привода измельчителей зерна (коллекторный) ДК110-750-12И7
Электродвигатели с двойной изоляцией. Предназначены для измельчителей зерна.
Электродвигатель для привода измельчителей зерна (коллекторный) ДК110-1000-15И1
Марки ДК110-1000-15И1 и ДК110-750-12И7 коллекторных электродвигателей специально разработаны для приводов зернодробилок (измельчителей зерна) «Нептун», «ГринТех», «Хрюша», «Мельник», «Форсаж», «Сибирь» и других машин.
Электродвигатель с двойной изоляцией коллекторный ДК110-1000-15В У2 ИВБЕ.522741.003 ТУ
Предназначены для привода разъединителей высоковольтных выключателей.
Электродвигатель с двойной изоляцией коллекторный ДК110-750-12В1 У2
Предназначены для привода разъединителей высоковольтных выключателей.
Электродвигатель с двойной изоляцией коллекторный ДК 110-750-12В У2
Предназначены для привода разъединителей высоковольтных выключателей.
Электродвигатель для центрифуг (коллекторный) ДК105-250-8Б
Электродвигатель ДК 76 коллекторный
Разработан для их применения в электромясорубках, электрорубанках, кухонных комбайнах, в стоматологическом оборудовании.
Электродвигатель для сепараторов коллекторный ДК 90-60-8МС-2И1Р
Предназначен для электрических сепараторов. Поставляется в сборе с резиновыми опорами.
Однофазные коллекторные электродвигатели характеризуются высокой скоростью вращения и способностью выдерживать долгую и низкодинамическую нагрузку. Частота вращения составляет примерно 3000 оборотов в минуту. Поэтому, они широко используются в различной бытовой технике и электроприборах, где необходима высокая скорость вращения рабочих элементов. Электромясорубки, кофемолки, кухонные комбайны, пылесосы, миксеры, смесители, стиральные машины, медицинское и стоматологическое оборудование и т.п. являются типичными примерами использования этого устройства.
Данный вид электрических устройств широко используется в различных электроприборах и весьма популярен из-за своей невысокой стоимости. Среди других преимуществ этого вида также можно отметить небольшой вес и размер. Такие особенности позволяют использовать ЭД даже в самых малых приборах, таких как миксер или кофемолка. Коллекторные двигатели легки в управлении и подключении: обороты легко регулируются, а для того, чтобы двигатель начал функционировать, достаточно просто присоединить его к сети.
Независимо от того, какую полярность будет иметь подаваемое напряжение, однофазный ЭД будет вращаться в одну сторону. Это происходит из–за взаимодействия магнитного потока и тока якоря, которые создаются обмоткой возбуждения. Есть возможность использовать утройство переменного тока, но для этого необходим статор, изготовленный из магнито-мягкого материала.
Однофазные ЭД обладают рядом высоких преимуществ: они компактны, быстроходны, обладают большим пусковым моментом. В широком диапазоне возможно плавное регулирование оборотов. Также, если напряжение остаётся неизменным, то возможно автоматическое снижение частоты оборотов, в случае если напряжение возрастает, количество оборотов может также возрасти.
Электротехническое предприятие «МиассЭлектроАппарат» занимается производством электродвигателей, в том числе и однофазных уже более полувека. На заводе используются отечественные и импортные материалы. Предприятие обладает международными и российскими сертификатами качества. «МиассЭлектроАппарат» гарантирует высочайшее качество своей продукции, так как на заводе работают опытные специалисты. Гарантия предоставляется на срок более чем 3 года. Помимо гарантий, завод также предоставляет лицензии на всю изготавливаемую продукцию.
«МиассЭлектроАппарат» предлагает очень привлекательные условия для покупки своей продукции. Купить электродвигатели, маслозакачивающие насосы, электромагнитные реле вы можете на сайте предприятия.
- О заводе
- Дипломы и награды
- Новости
- Вакансии
- Фотогалерея
- Контакты
- Комплектующие
- Асинхронные
- Коллекторные однофазные
- Коллекторные постоянного тока
- Бесконтактные постоянного тока вентильные
- Постоянного тока управляемые с дисковым якорем
- 29.37.08.800-02
- Для стартера 29.37.08.800-01
- 391.3708.800 для стартера ваз 2111 — производство
- Для стартера ВАЗ 2110 — 57.3708.800
- 422.3708.800
- 426.3708.800
- Для стартера ГАЗ, УАЗ, ВАЗ 4216.3708.800-07
- Для стартеров ВАЗ 1111 63.3708.800
- Для пылесосов ВВА-1200
- Для бытовых пылесосов АВ-600, АВ-1000
- МЗН-5 ЕЖАИ.063384
- МЗН-4 ЕЖАИ.063384
- МЗН-3 ЕЖАИ.063384
- МЗН 2 ЕЖАИ.063384.004 ТУ
- МЗН-2 ТУ 23.108-199-92
Коллекторный электродвигатель 220в принцип работы
Принцип работы и описание конструкции. Достоинства, недостатки и сферы применения
Хорошо известные многим асинхронные двигатели переменного тока не лишены недостатков, таких как невысокая перегрузочная способность, сложность и небольшой диапазон регулирования, невысокий пусковой момент. Все эти проблемы давно и достаточно успешно решаются применительно к общепромышленному асинхронному электроприводу.
Тем не менее, в некоторых электроприводах используются двигатели, получающие питание от сети переменного тока, но предоставляющие полный набор преимуществ, характерных для электрических машин постоянного тока. Речь идет о коллекторных однофазных электродвигателях переменного тока.
Дело в том, что любой электродвигатель постоянного тока теоретически может работать от сети переменного напряжения. Ведь направление его электромагнитного момента в любой момент времени зависит от текущего направления электрических токов в якорной обмотке и в обмотке возбуждения.
Если обе обмотки подключить в одну сеть переменного тока с частотой 50 герц, то ток в них будет менять свое направление одновременно. Поэтому крутящий момент не будет менять своего направления – двигатель будет набирать обороты, в том числе под нагрузкой.
На практике же все бывает немного сложнее. При независимом или параллельном включении обмотки возбуждения неизбежно возникает сдвиг фаз между напряжением сети и током возбуждения. Тогда электромагнитный момент будет попеременно менять свое направление, и нормальная работа привода будет невозможна.
Поэтому, коллекторные двигатели, предназначенные для включения в сеть переменного тока, имеют обмотку возбуждения, включенную последовательно с якорной обмоткой. В этом случае ток обмоток общий, и его направление может измениться только в обеих обмотках.
Это обеспечивает электромагнитный момент постоянного направления. Обычно, обмотка возбуждения делится на две части, одна из которых включается до якоря, а другая – после (относительно фазного провода). Для устранения влияния реакции якоря часто включаются дополнительные, компенсационные обмотки.
Для включения в сеть переменного напряжения традиционный для двигателей постоянного тока цельный, сварной магнитопровод статора не подходит – слишком большой величины будут достигать токи Фуко и связанные с ними потери на перемагничивание. Поэтому, магнитопроводы коллекторных двигателей переменного тока выполняются шихтованными из отдельных пластин.
Механическая и электромеханическая характеристики коллекторных двигателей переменного тока схожи с характеристиками электродвигателями постоянного тока последовательного возбуждения. Но в целом характеристики получаются хуже: из-за сдвига фаз на переменном токе коллекторный электродвигатель потребляет больший ток. Увеличение происходит за счет возникновения реактивной составляющей, и оно же становится причиной снижения КПД.
Их коммутация осложнена из-за наличия коллекторно-щеточного аппарата. Поэтому, мощность однофазных коллекторных машин ограничена несколькими киловаттами. Большая мощность нецелесообразна из-за больших потерь и повышенного износа щеток и коллекторных пластин.
Непрерывная коммутация щеток на коллекторе двигателей переменного тока способна генерировать достаточно мощные электромагнитные радиопомехи. Это легко замечают люди, имеющие опыт одновременного бритья электробритвой на 220 вольт и прослушивания радиоприемника. Чтобы минимизировать эти помехи, параллельно якорю двигателя устанавливаются фильтры, содержащие конденсатор.
Нормативная наработка на отказ коллекторных двигателей переменного тока составляет несколько тысяч часов. Это, конечно, немного в сравнении с обычными «асинхронниками». Однако, у них есть и свои преимущества.
Так, скорость вращения можно регулировать в очень широких пределах, причем разными способами: понижением напряжения или введением дополнительных сопротивлений в цепь питания. А вот изменение частоты питающего напряжения на скорость коллекторного электромотора не влияет.
Предельные и номинальные частоты вращения коллекторных двигателей могут достигать десяти тысяч оборотов в минуту, что недостижимо для асинхронных. Кроме того, они имеют очень хороший пусковой момент, способны выдерживать серьезные перегрузки и даже воздействие режима короткого замыкания в течение нескольких секунд без ущерба для своей конструкции.
Коллекторные однофазные двигатели отличаются высокой удельной мощностью: они компактны и приемисты. Благодаря своей, не особенно сложной конструкции, эти машины приобрели довольно широкую популярность среди производителей бытовой техники и ручного электроинструмента.
Так, подавляющее большинство пылесосов, стиральных машин, кухонных комбайнов, углошлифовальных машин, дрелей оснащены именно коллекторными однофазными электродвигателями, способными включаться в сеть как переменного, так и постоянного тока.
Для подключения в сеть постоянного тока в них используется вся обмотка возбуждения, а для включения в переменную сеть – часть ее. Тогда необходимость в компенсационных обмотках отпадает, а двигатель может считаться универсальным.
Что такое универсальный коллекторный электродвигатель? Устройство и принцип действия
Универсальный коллекторный двигатель (УКД) – это электродвигатель, который способен работать как с постоянным, так и переменным током, за что и получил свое название.
СОДЕРЖАНИЕ:
- Устройство универсального коллекторного двигателя
- Принцип работы с постоянным током
- Принцип работы с переменным током
- Особенности использования
- Достоинства и недостатки
- Основное применение
Устройство универсального коллекторного двигателя
Конструкция такого мотора, практически идентична обычному коллекторному (щеточному) электромотору постоянного тока. Однако здесь, вместо постоянных магнитов используются электромагниты и присутствуют дополнительные решения для работы с переменным током. Основными частями конструкции все также остаются ротор и статор.
Статор — это часть, которая не двигается (статична).
Статор содержит в себе:
Ротор — это вращающаяся с валом часть.
Ротор состоит из следующих основных деталей:
- Вал
- Коллекторный узел
- Обмотки ротора
- Сердечник из тонких пластин
Теперь давайте рассмотрим то, что делает этот мотор таким особенным – принцип действия.
Принцип работы с постоянным током
При подключении к источнику постоянного тока, двигатель работает как обычный коллекторный двигатель постоянного тока. Катушки статора подключаются к источнику питания и последовательно соединены через щетки к коллекторному узлу ротора, через которые ток поступает на его обмотки.
Щетки подключены к разным полукольцам коллектора, благодаря чему с каждой стороны проходит однонаправленный ток. Вследствие этого возникают магнитные поля и под их воздействием ротор начинает вращение. Вращающий момент всегда направлен в одну сторону и ротор продолжает вращаться.
В этом режиме электромотор имеет самый высокий КПД, Ближайшей альтернативой в работе с источником постоянного тока является бесколлекторный двигатель, однако из-за применения в нем постоянных магнитов его максимальный момент будет гораздо меньшим.
Принцип работы с переменным током
Для работы с переменным током используют принцип последовательного возбуждения обмоток. Такая схема позволяет подсоединять обмотки статора последовательно с обмотками ротора (как описывалось выше). И по ним всегда будет двигаться ток одной и той же фазы. Возникающие магнитные силы также будут вращать ротор в одном направлении.
Благодаря этому виду подключения смена полюсов магнитных полей на обмотках выполняется практически одновременно, а значит итоговый момент будет также иметь одно направление.
Главное преимущество такой схемы — это большой максимальный момент. С другой стороны, возникают большие обороты на холостом ходу, способные повредить мотор при включении без нагрузки.
Однако если подключить к переменному источнику питания стандартный коллекторный мотор, то он не будет работать, так как будут возникать переменные магнитные поля и вызывать сильные потери в магнитопроводе из-за вихревых токов Фуко.
Чтобы избежать этих потерь, статор изготавливают из набора специальных изолированных тонких пластин, а обмотку разделяют на секции. Таким способом удается эффективно бороться с перемагничиванием. Для уменьшения искрения и воздействия электродвижущей силы двигатель оснащается щётками, которые обладают высоким сопротивлением.
Чтобы поменять направление вращение надо перемкнуть (переплюсовать) обмотки либо ротора, либо статора. При работе с переменным источником, общий КПД будет гораздо ниже.
Особенности использования
Как мы выяснили выше, основными особенностями, которые делают этот мотор уникальным, в сравнении с асинхронными и синхронными видами: это его способность работать с постоянным и переменным током, а также возможность работать на чрезвычайно большой скорости оборотов (от 8000 и даже до 20000 об/мин.).
Обратной стороной медали будет его маломощность высокий уровень шума, радиопомех и искрения, что ограничивает его использование в некоторых сферах. Давайте рассмотрим все плюсы и минусы подробнее.
Достоинства и недостатки
Универсальный мотор, благодаря особенностям принципа действия имеет свои особенности и недостатки
Достоинства:
- Высокий пусковой момент. Устройство может быстро набрать большое количество оборотов как в холодном, так и горячем состоянии.
- Высокая удельная мощность. Универсальный мотор может работать с большей выходной мощностью чем аналоги, того же размера.
- Небольшая цена. Стоимость мотора чуть выше чем обычного коллекторного и меньше чем бесколлекторного.
- Простота конструкции. Несложное устройство обеспечивает простоту обслуживания и ремонта.
- Большой общий рабочий ресурс. Основные детали довольно долговечны (за исключением щеток).
- Портативность. Небольшие размеры электромотора позволяют использовать его в самых малых приборах (дрель) .
- Простота управления. Мотор может регулироваться простым изменением напряжения.
Недостатки:
- Шум и вибрация. В основном возникает из-за работы щеток на высоких оборотах.
- Низкая эффективность. КПД устройств лежит в диапазоне 55-80%, при работе с переменным током он меньше чем с постоянным.
- Неэффективен при работе с малым напряжением. Устройство практически бесполезно при работе с напряжением до 100В.
- Щетки быстро изнашиваются. Из-за постоянного контакта щеток с коллектором требуется их периодическая замена или ремонт.
- Доп. оборудование для некоторых задач. Эффективные конструкции имеют низкий момент и быстроходность, поэтому иногда необходим дополнительный редуктор.
Основное применение
Универсальный тип электродвигателя как мы выяснили это простой, недорогой и высокоскоростной мотор. Возможность работы на высоких оборотах подключаясь к однофазной сети переменного тока, сделало их очень популярными в бытовой технике. В промышленности этот тип также часто используется, однако его эффективность подходит далеко не всем.
Основные устройства применения универсального электромотора:
- Дрели и шуруповерты
- Миксеры и блендеры
- Вентиляторы
- Пылесосы
- Насосы
- Швейные машины
- Стеклоочистители
Такой мотор используется в первую очередь в оборудовании, где уровень шума некритичен и важны большие обороты вращения. На сайте eltaltd.com.ua вы сможете найти большой каталог в категории Электродвигатели. Там вы сможете найти товары таких известных брендов как Siemens, ABB, Lenze и много других
Подписывайтесь на наши обновления:
- IVO Baumer: датчики угла поворота с немецким качеством
- Турбинный расходомер: принцип работы с газом и жидкостью