Латунь для электрических контактов марка
Перейти к содержимому

Латунь для электрических контактов марка

  • автор:

Латунь сплавы и марки

Общая характеристика латуни: латуни представляют собой двойные или многокомпонентные медные сплавы, в которых цинк является основным легирующим компонентом. По сравнению с медью они обладают более высокой прочностью (в том числе при повышенных температурах), коррозионной стойкостью, упругостью, технологичностью (литье, обработка давлением, резание), трибологическими характеристиками. Это наиболее дешевые и распространенные в машиностроении медные сплавы.

Двойные латуни, содержащие до 20 % Zn, называются томпаком (латуни, содержащие 14—20 % Zn — полутомпаком).

Диаграмма состояния Сu—Zn характеризуется пятью перитектическими реакциями. В результате из жидкого раствора кристаллизуется шесть различных фаз. Практическое значение имеют сплавы, содержащие до 50 % Zn; соответствующая этому содержанию часть диаграммы состояния включает область а-твердого раствора цинка в меди. Граница растворимости цинка в меди при комнатной температуре равна 39 %; а-твердый раствор имеет гранецентрированную кристаллическую решетку. Фаза в является твердым раствором на основе соединения CuZn с объемно центрированной кристаллической решеткой. Ширина области гомогенности в-фазы меняется в зависимости от температуры: от 37 до 57 % Zn при высоких температурах и от 45 до 49 % Zn при комнатной.

В соответствии с диаграммой состояния двойные латуни в зависимости от структуры подразделяются на а-латуни, (а + в)-латуни и в-латуни.

При температуре 454—468 °С происходит упорядочение в-твердого раствора, т. е. ниже этих температур наблюдается определенный порядок в расположении атомов меди и цинка в кристаллической решетке в-фазы. Переход неупорядоченного твердого раствора в упорядоченное состояние сопровождается резким падением пластичности и повышением хрупкости сплавов, что затрудняет их обработку давлением в холодном состоянии.

Таким образом, латуни, содержащие более 39 % Zn, имеют двухфазную структуру а + в или однофазную в и обладают низкой пластичностью, поэтому они хорошо обрабатываются давлением лишь в горячем состоянии, в отличие от а-латуни, которая хорошо обрабатывается в холодном состоянии.

В многокомпонентных (специальных) латунях добавки третьего, четвертого элемента и более могут повышать прочность, твердость, упругость, коррозионную стойкость, антифрикционные свойства и технологические характеристики. В зависимости от дополнительных легирующих элементов латунь, содержащую А1, называют алюминиевой; Fe и Мп — железомарганцевой; Мn, Sn, Pl — марганцево-оловянно-свинцовой и т. д.

Двойные латуни маркируют буквой Л и числом, характеризующим среднее содержание меди в сплаве в %. В обозначении многокомпонентных латуней после буквы Л указывают легирующие элементы. Числа после букв означают содержание легирующих элементов.

По технологическому признаку латуни подразделяют на литейные и обрабатываемые давлением. Для изготовления литейных латуней могут применяться вторичные литейные латуни.

Получение латуни: Для плавки латуни может быть использован любой тип плавильных печей, применяемых для плавки медных сплавов. Но наиболее целесообразно латунь плавить в электрических индукционных низкочастотных печах с магнитопроводом. Менее желательна плавка латуни в электродуговых плавильных печах.

При плавке медноцинковых сплавов следует иметь в виду, что из всех других компонентов сплава наибольшей окисляемостью обладает цинк. Это объясняется низкой температурой кипения его.

Для уменьшения окисления цинка рекомендуются следующие мероприятия:

1) максимально ускорять процесс загрузки и плавки шихты, для этого загружать шихту в печь в компактном виде таким образом, чтобы куски и пакеты могли хорошо и плотно укладываться в печи;

2) поверхность жидкого сплава следует покрывать кусковым древесным углем;

3) загрузочное отверстие печи по возможности держать всегда закрытым;

4) не допускать излишнего перегрева расплава (выше температуры 1100—1200° С).

В качестве шихты для плавки латуни могут быть использованы как чистые, так и оборотные металлы. При плавке латуни на оборотных металлах порядок загрузки шихты в печь не имеет большого значения. При наличии в шихте свежих металлов в первую очередь загружают и расплавляют медь, затем оборотные металлы. Цинк и свинец, предварительно подогретые до 100—120° С, вводят в расплав в последнюю очередь. Во всех случаях плавка ведется под слоем древесного угля, который загружается в печь с первой порцией шихты.

Плавку латуни из свежих металлов и оборотных отходов в индукционной печи промышленной частоты с магнитопроводом рекомендуется вести в следующей последовательности.

1. По окончании разливки печь устанавливают в рабочее положение. При обнаружении оголенного канала печи выключают ток и канал заливают расплавленным металлом из другой плавильной печи.

2. Аккуратно загружают два-три пакета отходов, включают ток и производят дальнейшую загрузку шихты в печь в следующем порядке: вначале загружают предварительно подсушенные прессованные отходы в количестве 15—20% от массы всей шихты, стружку, опилки и другую мелочь; затем в жидкий металл загружают медь и тугоплавкие лигатуры (в случае плавки специальных латуней); одновременно с этим в печь загружают необходимое количество кускового древесного угля; после этого осторожно загружают переплавленные отходы и литники и в последнюю очередь загружают цинк и другие легкоплавкие компоненты (в случае приготовления специальных латуней).

3. Во избежание повреждения футеровки печи масса кусков шихтовых материалов не должна превышать 25 кг.

4. Шахта печи должна загружаться плотно и быстро, загрузочное окно при этом не должно долго оставаться открытым.

5. При плавке надо следить за тем, чтобы шихта не зависала в шахте. Быстрое колебание стрелки амперметра сигнализирует о том, что шихта отделена от расплавленного металла. Зависшую шихту с помощью деревянного шеста или какого-либо другого приспособления опускают вниз. При зависании шихты время плавки удлиняется и увеличивается угар металла.

6. В случае ведения плавки латуни на чистых металлах (меди и цинка) вначале загружают 25% шихты (вместе медь и цинк), затем всю оставшуюся медь и в последнюю очередь цинк (или другой легкоплавкий металл).

7. Шихта должна быть сухой; загрузка влажной шихты запрещается.

8. Тяжелые куски шихты должны загружаться в печь при помощи специальных приспособлений.

9. Шихта должна подаваться к печи в нумерованной таре (тележке). Это исключает смешивание шихты.

10. Необходимо иметь около печи некоторый запас шихты (две-три тележки).

11. После расплавления и нагрева расплава до заданной температуры с поверхности расплава снимают шлак, тщательно перемешивают и производят разливку.

Для увеличения жидкотекучести латуни в нее иногда перед разливкой добавляют фосфор в виде лигатуры медь — фосфор, содержащей 12—14% Р.

Плавку кремнистой и кремнистосвинцовистой латуней ведут под покровным флюсом — стеклом или бурой. Вследствие склонности кремнистых латуней к поглощению восстановительных газов плавить их в восстановительной атмосфере или под слоем древесного угля нельзя.

При плавке кремнистых и кремнистосвинцовистых латуней в первую очередь в разогретую печь загружают медь, по расплавлении ее — отходы, меднокремнистую лигатуру. Цинк и свинец загружают в последнюю очередь после снятия шлака с расплава. Расплав тщательно перемешивают, доводят его до температуры разливки и затем разливают.

Плавку марганцовистых латуней ведут в условиях слабоокислительной атмосферы или близкой к нейтральной под покровом флюса из битого стекла, или под покровом древесного угля. Марганец в расплав вводят с лигатурами после расплавления всех других составляющих шихты.

Краткие обозначения:
σв — временное сопротивление разрыву (предел прочности при растяжении), МПа ε — относительная осадка при появлении первой трещины, %
σ0,05 — предел упругости, МПа Jк — предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 — предел текучести условный, МПа σизг — предел прочности при изгибе, МПа
δ5,δ4,δ10 — относительное удлинение после разрыва, % σ-1 — предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж — предел текучести при сжатии, МПа J-1 — предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν — относительный сдвиг, % n — количество циклов нагружения
s в — предел кратковременной прочности, МПа R и ρ — удельное электросопротивление, Ом·м
ψ — относительное сужение, % E — модуль упругости нормальный, ГПа
KCU и KCV — ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T — температура, при которой получены свойства, Град
s T — предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ — коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB — твердость по Бринеллю C — удельная теплоемкость материала (диапазон 20 o — T ), [Дж/(кг·град)]
HV — твердость по Виккерсу pn и r — плотность кг/м 3
HRCэ — твердость по Роквеллу, шкала С а — коэффициент температурного (линейного) расширения (диапазон 20 o — T ), 1/°С
HRB — твердость по Роквеллу, шкала В σ t Т — предел длительной прочности, МПа
HSD — твердость по Шору G — модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Таблица совместимости металлов и сплавов в электропроводке. Почему в электропроводке нельзя соединять медь и алюминий

Алюминий и медь образуют «гальваническую пару», которая перегревается в месте контакта окисляясь и вызывают «электролиз» что приводит к разрушению соединения и чем выше влажность тем быстрее происходит процесс.

Медный проводник тоже достаточно быстро покрывается окислом с той лишь разницей, что окисел меди более-менее проводит ток.

Но если соединены медный и алюминиевый проводник, их окислы имеют возможность диссоциации, то есть распада на заряженные ионы. Диссоциация возможна благодаря естественной влаге, которая всегда есть в воздухе. Ионы окислов алюминия и меди, будучи частицами с разным электрическим потенциалом, начинают принимать участие в процессе течения тока. Начинается процесс, известный как «электролиз».

В ходе электролиза ионы переносят заряды и перемещаются сами. Но, кроме того, ионы – это ведь частицы металлов проводников. При их перемещениях металл разрушается, образуются раковины и пустоты. Особенно это касается алюминия. Ну, а там где есть пустоты и раковины, там уже нельзя иметь надежный электрический контакт.

Плохой контакт начинает греться, становится еще хуже и так далее вплоть до возгорания.

Совместимость некоторых металлов и сплавов

Примечание: С – совместимые, Н – несовместимые, П – совместимые при пайке, при непосредственном соединении образуют гальваническую пару.

Материал Алюминий Бронза Латунь Медь Никель Олово Припой ПОС Сталь нелегированная Цинк
Алюминий С Н Н Н Н Н Н С С
Бронза Н С С С С П П Н Н
Латунь Н С С С С П П С С
Медь Н С С С С П П Н Н
Никель Н С С С С П П С С
Олово Н П П П П С С С С
Припой ПОС Н П П П П С С С С
Сталь нелегированная Н Н Н Н С С С С С
Цинк С Н Н Н С С С С С

Металлические сплавы для токопроводящих шин, деталей и узлов электротехнических машин и аппаратов

Для изготовления различных токопроводящих деталей электрооборудования, стержней короткозамкнутых роторов асинхронных электродвигателей, прижимных контактов электрических аппаратов широко используются простая латунь или многокомпонентные сплавы на основе меди, в которых основной легирующей добавкой является цинк.

Прочность латунных материалов и сплавов характеризуется параметрами σр, σт, σи — усилия линейного растяжения, при термическом воздействии и на изгиб соответственно.

Медно-цинковые сплавы по сравнению с медью обладают более высокой механической прочностью и повышенным значением удельного электрического сопротивления. Латунь подразделяется на обрабатываемую давлением и литьем.

В электротехнике более широкое применение находит латунь, обрабатываемая давлением. Ее основные свойства приведены в табл. 1.

Табл. 1. Электрические и механические свойства латуни

Для изготовления троллейных проводов, коллекторных пластин, контактных ножей, скользящих контактов, токоведущих пружин, упругих контактов и т.п. широко используется бронза.

Бронза представляет собой медный сплав и по сравнению с медью отличается высокой механической прочностью, твердостью, упругостью и стойкостью к истиранию.

Бронза подразделяется на группы: бронза оловянная, обрабатываемая давлением; бронза литейная; бронза безоловянная литейная. Общие электрические и механические свойства бронзы приведены в табл. 2.

Табл. 2. Электрические и механические свойства бронзы

Для изготовления токопроводящих шин, фольги, роторов асинхронных электродвигателей и других подобных изделий широко используются сплавы на основе алюминия, причем их электрические, механические и технологические свойства легко регулируются легирующими добавками. По способу изготовления изделий алюминиевые сплавы делятся на деформированные и литейные.

Токопроводящие шины и электротехническая проволока изготовляются из алюминиевых сплавов с примесями магния и кремния АДО и АД31, основные свойства которых приведены в табл. 3.

Табл. 3. Электрические и механические свойства шин из алюминиевых сплавов

Короткозамкнутые роторы асинхронных электродвигателей общего назначения обычно изготовляются из алюминия марок А5 или А7. Для изготовления роторов двигателей с особыми характеристиками применяются сплавы, приведенные в табл. 4. Высокими литейными свойствами обладают сплавы марок АК10, АКМ10-2, АКМ12-4 и АКЦ11-12. Ограниченными литейными свойствами обладают чистый алюминий и сплавы марок АКЗ, АКМ2-1 и АКМ4. Сплавы АМ7 и АКМ1-9 имеют невысокие литейные свойства и применяются лишь в специальных случаях.

Табл. 4. Свойства алюминиевых сплавов для заливки роторов асинхронных двигателей

Электрические контакты из латуни

гиперболоидный электрический контакт

. Гиперболоидная контактная технология Hypertac® с превосходными характеристиками Серия HYPER предлагает оригинальную технологию гиперболоидных контактов с превосходными характеристиками, предназначенную для использования во всех областях .

Добавить к сравнению Удалить из сравнения

плоский электрический контакт

плоский электрический контакт 6-66506-1

пальцевый из латуни
плоский электрический контакт

. Контактный защелкивающийся разъем D-Sub из латунного материала, с размером контакта 20 подключается к проводам и кабелям. Доступен в диапазоне размеров проводов 32 — 18 AWG и используется для сигнальных цепей. — Тип контакта: Контакт — .

Добавить к сравнению Удалить из сравнения

обжимной электрический контакт

обжимной электрический контакт 14104264

из латуни из посеребренного металла
обжимной электрический контакт

. Серия D Обжимной контакт с наружной резьбой 0,5 мм ² Код товара: 14104264 METE CON — обжимной контакт — 10A — мужской — сечение кабеля: 0,5 мм ² 0,14 — 0,37 мм² 0,5 мм² 0,75 мм² 1 мм² 1,5 мм² 2,5 мм² Исполнение: Способ заделки — обжимной .

Добавить к сравнению Удалить из сравнения

электрический контакт OEM

электрический контакт OEM

из латуни для трансформатора
электрический контакт OEM

. В этом проекте по производству электрических контактов OEM мы придаем большое значение процессам управления качеством и строго придерживаемся стандартов системы управления качеством ISO13485 и IATF16949 для обеспечения точного контроля .

Добавить к сравнению Удалить из сравнения
презентуйте свою продукцию

& связывайтесь со всеми клиентами в одном месте круглый год

ВАШЕ МНЕНИЕ
Оцените качество предлагаемых результатов:

Ваши предложения по улучшению услуг:

Фильтры: чтобы быстрее найти нужную продукцию.
Терминология: чтобы найти термины, наиболее широко используемые в данной отрасли.
Бренды: чтобы иметь более широкий выбор.
Продукты: чтобы улучшить релевантность предложения.
Другое

Помогите нам улучшить качество наших услуг:

Ваш ответ был учтен. Спасибо за Вашу помощь.
Расширить поиск

  • Электрические контакты
  • Пружинные контакты
  • Кабельные втулки из латуни
  • Соединители из латуни
  • Вращающиеся коллекторы из латуни
  • Наматывающие устройства из латуни
  • Шунты из латуни
  • Адаптеры из латуни

Средняя оценка: 4.0 / 5 (количество голосов: 1)

С DirectIndustry Вы можете: Найти дистрибьютора или распространителя рядом с вами | Связаться с производителем для получения информации о расценках или сметы | Просмотреть характеристики и технические спецификации продукции самых известных марок | Просмотреть документацию и каталоги онлайн в формате PDF

* Цены указаны без учета налогов, без стоимости доставки, без учета таможенных пошлин и не включают в себя дополнительные расходы, связанные с установкой или вводом в эксплуатацию. Цены являются ориентировочными и могут меняться в зависимости от страны, цен на сырьевые товары и валютных курсов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *