Причины возникновения и использование резонанса напряжений
Резонанс напряжений происходит в электрической цепи, включающей в себя несколько элементов: источник электроэнергии, катушку индуктивности и конденсатор. Перечисленные элементы соединяются последовательно. При этом источник напряжения имеет такую частоту, которая совпадает с внутренним контуром. Это часто применяется в полосовых фильтрах.
Последовательное соединение
Катушка индуктивности и последовательно включенный в цепь конденсатор вместе особенным образом воздействуют на генератор, от которого запитана цепь. Также они влияют на фазовые соотношения напряжения и тока:
- Первый элемент сдвигает фазу, при этом напряжение начинает обгонять ток примерно на четверть периода.
- Второй элемент действует иначе. Он заставляет ток обгонять напряжение также на одну четвертую часть периода фазы.
Индуктивное сопротивление действует на смещение фаз, из-за чего его можно считать противоположным работе емкостного сопротивления. В результате итоговый сдвиг фаз между напряжением и током в цепи зависит от суммарного действия индуктивного и емкостного сопротивлений, а также соотношения между ними. От этого тоже зависит характер цепи.
Если одноимённая величина превосходит противоположную, то систему можно считать емкостной, ведь ток превосходит по фазе. При иной ситуации характер цепи считается индуктивным, ведь напряжение доминирует.
Общее реактивное сопротивление определить просто. Необходимо сложить два показателя сопротивления:
- Индуктивное от катушки.
- Емкостное от конденсатора.
Из-за того, что они оказывают противоположное воздействие, одному из них присваивается отрицательный знак (обычно ёмкостному сопротивлению конденсатора). Тогда общее реактивное сопротивление можно найти так: из показателя катушки вычесть конденсатор. Если общее напряжение разделить на найденный параметр, то по закону Ома получится сила тока. Эту формулу можно легко изменить, переведя на напряжение. Оно будет равно произведению силы тока и разности двух сопротивлений (индуктивное берется с катушки, а емкостное — с конденсатора).
Если раскрыть скобку, то первое значение отразит действительный показатель части общего напряжения, которая старается преодолеть сопротивление. Второе — слагающая всего напряжения, которая пытается преодолеть емкостный параметр. Так, общее напряжение можно рассматривать как сумму этих слагаемых.
Обычно значением активного сопротивления можно пренебречь. Если оно слишком велико, учитывать его все же нужно.
Для определения этого значения нужно вычислить квадратный корень из суммы двух частей:
- Общее активное сопротивление, возведенное в квадрат.
- Квадрат разности индуктивного и емкостного сопротивлений, то есть общее реактивное.
Очевиден переход к закону Ома. Если разделить силу тока на найденное значение, то можно получить напряжение.
Цепь переменного тока
Если соединить катушку с конденсатором последовательно, происходит меньшее смещение по фазе, чем если бы эти элементы были включены отдельно. Это связано с тем, что эти элементы действуют на цепь совершенно иначе, сдвигая баланс в разные стороны. Они компенсируют фазовый сдвиг, усредняют его значение.
Возможен и равный баланс. Полная компенсация соотношения между напряжением и током произойдет, если сопротивление катушки и конденсатора будут равны друг другу. В этом случае цепь будет вести себя так, будто бы в нее не включены эти элементы. Действие системы сведется к чистому активному сопротивлению, образованному соединительными проводами и катушкой. Сила действующего тока достигнет максимального значения, его можно будет вычислить по стандартному закону Ома.
Понятие резонанса
При описанной ситуации действующие напряжения на катушке и конденсаторе сравняются, а также достигнут максимального значения. Если активное сопротивление в этой цепи минимальное, то локальные показатели будут в несколько раз превышать общее напряжение. Такое явление принято называть резонансом напряжений.
Важно понимать, что местные сопротивления напрямую зависят от показателей тока. Если частоту тока уменьшить, то индуктивное значение снизится, а емкостное — возрастет. Помимо активного сопротивления, в сети также возникнет реактивное, из-за чего резонанс сойдет на нет. Это случится и в том случае, если изменить значения индуктивности или емкости.
Если в цепи возникает резонанс, то энергия источника расходуется исключительно на нагрев проводов, то есть преодоление активного сопротивления, так как катушка перекидывает ток на конденсатор и обратно без усилий генератора. Ведь в цепи с одним из элементов ток колеблется, периодически переходя от истока в магнитное поле. Это касается катушки. В случае с конденсатором наблюдается аналогичная ситуация, только участвует электрическое поле. Если эти два элемента объединены, а также наблюдается резонанс, то энергия циклично движется от катушки к конденсатору и обратно. При этом она тратится в большей степени только из-за сопротивления проводника.
При нарушении резонанса количество энергии, требуемой первому и второму элементу, не совпадает. Возникнет избыток, который будет покрываться усилиями генератора. Этот процесс можно сравнить с механизмом часов с маятником. Если бы силы трения не было, он мог колебаться без использования дополнительного груза или пружины в механизме. Но эти элементы, когда необходимо, передают часть своей энергии маятнику, из-за чего тот преодолевает силу трения и движется непрерывно. При резонансе в электроцепи количество энергии, которую необходимо сообщить для поддержания колебаний, минимально.
Цепь считается колебательным контуром, если соблюдено несколько условий. Во-первых, ток должен быть переменным. Во-вторых, в систему должны входить генератор, конденсатор и катушка индуктивности. В-третьих, элементы должны быть соединены последовательно. В-четвертых, показатели внутренних сопротивлений должны быть равны.
Но резонанс невозможен, если частота генератора, емкость и индуктивность цепи не будут соответствовать значениям, зависящим от других параметров цепи. Все они вычисляются по специальным несложным формулам.
Польза и вред
Резонанс часто используют с пользой. Один из ярких бытовых примеров — починка радиоприемника. Электрика устройства настраивается таким образом, чтобы возник резонанс. Благодаря этому напряжение на катушке повышается и превосходит значение в цепи, созданной антенной. Это необходимо для нормальной работы приемника.
Но иногда действие резонанса сказывается на технике исключительно пагубно. Рост напряжения на некоторых участках может привести к их порче. Из-за того, что локальные значения не соответствуют генератору, отдельные детали или измерительные приборы могут выйти из строя.
Закон Ома для цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи.
Если в цепи переменного тока имеются нагрузки разных типов, то закон Ома выполняется только для максимальных (амплитудных) и действующих значений тока и напряжения.
— полное сопротивление переменному току.
Учитывая, что отношение напряжения к силе тока – это сопротивление, и подставляя конкретные выражения для соответствующих сопротивлений, получим: .
Сдвиг фаз в цепи переменного тока определяется характером нагрузки:
Мощность в цепи переменного тока.
Активной мощностью переменного тока называется средняя за период мощность необратимых преобразований в цепи переменного тока (преобразование энергии электрического тока во внутреннюю энергию):
или, переходя к действующим значениям, .
Величина наз. коэффициентом мощности. При малом коэффициенте мощности потребляется лишь малая часть мощности, вырабатываемой генератором. Остальная часть мощности периодически перекачивается от генератора к потребителю и обратно и рассеивается в линиях электропередач.
Резонанс в электрической цепи.
Резонанс в электрической цепи — явление резкого возрастания амплитуды вынужденных колебаний тока при приближении частоты внешнего напряжения (эдс) и собственной частоты колебательного контура.
Из выражения для полного сопротивления переменному току
видим, что сопротивление будет минимальным (сила тока при заданном напряжении – максимальной) при условии или .
Следовательно, — т.е. частота изменения внешнего напряжения равна собственной частоте колебаний в контуре.
Амплитуды колебаний напряжения на индуктивности и емкости будут равны
— т.е. они равны по величине и противоположны по фазе (напряжение на индуктивности опережает по фазе напряжение на емкости на p).
Полное падение напряжения в контуре равно падению напряжения на активном сопротивлении. Амплитуда установившихся колебаний тока будет определяться уравнением . В этом и состоит смысл явления резонанса.
При этом если величина ,
то напряжения на емкостной и индуктивной нагрузках могут оказаться много больше внешнего напряжения (эдс генератора)!
На рисунке представлена зависимость тока в колебательном контуре от частоты при значениях R, где R123.
В параллельном контуре при малых активных сопротивлениях R1 и R2 токи в параллельных ветвях противоположны по фазе. Тогда, согласно правилу Кирхгофа .
В случае резонанса . Резкое уменьшение амплитуды силы тока во внешней цепи, питающей параллельно соединенные емкостное и индуктивное сопротивления при приближении частоты внешнего напряжения к собственной частоте колебательного контура наз. резонансом токов.
Применение: одно из основных применений резонанса в электрической цепи – настройка радио и телевизионных приемников на частоту передающей станции. Необходимо учитывать резонансные явления, когда в цепи, не рассчитанной на работу в условиях резонанса, возникают чрезмерно большие токи или напряжения (расплавление проводов, пробой изоляции и т.д.).
Резонанс напряжений в цепи переменного тока
Электрический резонанс — это явление резкого возрастания амплитуды электрических колебаний, возникающее при совпадении источника с частотой собственных колебаний колебательного контура .
Параллельное соединение. Активная, реактивная и полная проводимости. . Треугольники проводимостей и токов.
Активные составляющие токов равны
Реактивные составляющие токов равны
В последнем уравнении взят знак минус, поскольку составляющие I1р (индуктивная) и I2р (емкостная) направлены в разные стороны от оси U.
Полный ток находится из уравнений
Представим комплексную проводимость в алгебраической форме
Действительную часть комплексной проводимости G называют активной проводимостью, а мнимую В — реактивной. На рис. 2.10.2, а сделаны построения, соответствующие комплексному выражению (2.10.5).
Рис. 2.10.2. Треугольники проводимостей и токов
Заштрихованный прямоугольный треугольник на рис. 2.10.2, а называют треугольником проводимостей. Из треугольника очевидны соотношения.
; G = Ycosj; В = Ysinj;
tgj = B/G; cosj = G/Y; sinj = B/Y. (2.10.6)
Выразим активную и реактивную составляющие проводимости ветви через ее активное и реактивное сопротивления.
Рассмотрим, например, проводимость ветви с элементами R1 и jXL
При получении соотношения (2.10.7) числитель и знаменатель домножены на сопряженный комплекс .
Следует обратить внимание на то, что мнимая часть комплексной проводимости ветви с индуктивным элементом отрицательная. Если бы подобным образом было получено соотношение для второй ветви, содержащей емкостный элемент, то формулы имели бы тот же вид, но мнимая часть была бы положительной.
G = R/Z 2 ; B = X/Z 2 . (2.10.8)
Построение треугольника тока очевидно из рис. 2.10.2, б. На векторной диаграмме рис. 2.10.2, б вектор тока спроецирован на направление вектора напряжения. Полученный при этом треугольник называют треугольником тока. Катеты прямоугольного треугольника тока называют активной и реактивной составляющими: активная составляющая тока Ia параллельна напряжению, а реактивная Iр — ортогональна.
Из треугольника тока можно получить следующие выражения:
Ia = Icosj, Iр = Isinj. (2.10.9 а)
Так как I = UY, cosj = G/Y, sinj = В/Y, получаем, после подстановки в (2.10.9 а),
Iа = GU и Iр = BU. (2.10.9 b)
Резонанс Токов
Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. Резонанс токов может возникнуть в параллельной цепи (см. рис. 2.17, а), одна из ветвей которой содержит L и r, а другая Си r.
Резонансом токов называется такое состояние цепи, когда общий ток совпадает по фазе с напряжением, реактивная мощность равна нулю и цепь потребляет только активную мощность. На рис. 2.17, г изображена векторная диаграмма цепи рис. 2.17, а при резонансе токов.
Как видно из векторной диаграммы, общий ток цепи совпадает по фазе с напряжением, если реактивные составляющие токов ветвей с индуктивностью и емкостью равны по модулю:
Общий реактивный ток цепи, равный разности реактивных токов ветвей, в этом случае равен нулю:
Общий ток цепи имеет только активную составляющую, равную сумме активных составляющих токов ветвей:
Выразив реактивные токи через напряжения и реактивные проводимости, получим
UbL = UbС,
Итак, при резонансе токов реактивная проводимость ветви с индуктивностью равна реактивной проводимости ветви с емкостью.
Выразив bL и bС через сопротивления соответствующей ветви, можно определить резонансную частоту контура:
r1 2 + (2πfL) 2
В идеальном случае, когда r1 = r2 = 0,
При резонансе токов коэффициент мощности равен единице:
Полная мощность равна активной мощности:
Реактивная мощность равна нулю:
Q = QL — QC = 0.
Энергетические процессы в цепи при резонансе токов аналогичны процессам, происходящим при резонансе напряжений, которые были подробно рассмотрены в § 2.12.
Реактивная энергия действует внутри цепи: в одну часть периода энергия магнитного поля индуктивности переходит в энергию электрического поля емкости, в следующую часть периода энергия электрического поля емкости переходит в энергию магнитного поля индуктивности. Обмена реактивной энергией между потребителями цепи и источником питания не происходит. Ток в проводах, соединяющих цепь с источником, обусловлен только активной мощностью.
Рис. 2.19. Электрическая цепь (а) и графики зависимости Ir, IL, IC и Iот частоты f (б)
Для резонанса токов характерно, что общий ток при определенном сочетании параметров цепи может быть значительно меньше токов в каждой ветви. Например, в идеальной цепи, когда r1 = r2 = 0 (см. рис. 2.18, а), общий ток равен нулю, а токи ветвей с емкостью и индуктивностью существуют, они равны по модулю и сдвинуты по фазе на 180°. Резонанс в цепи при параллельном соединении потребителей называется резонансом токов.
Резонанс токов может быть получен путем подбора параметров цепи при заданной частоте источника питания или путем подбора частоты источника питания при заданных параметpax цепи.
Представляет интерес влияние частоты источника питания на значения токов в цепи, например в цепи, изображенной на рис. 2.19, а.
Ток в ветви с индуктивностью обратно пропорционален частоте:
IL = U/2πfL,
а ток в ветви с емкостью прямо пропорционален частоте:
IС =U2πfC.
Ток в ветви с активным сопротивлением не зависит от частоты 1 :
Вектор общего тока в цепи равен геометрической сумме векторов токов ветвей: Ī =Īr + ĪL+ĪС,
Резонансные явления в цепях синусоидального тока.
Резонансом называется такой режим работы цепи, включающей в себя индуктивные и емкостные элементы, при котором ее входное сопротивление (входная проводимость) вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением.
Резонанс в цепи с последовательно соединенными элементами
(резонанс напряжений)
Для цепи на рис.1 имеет место
В зависимости от соотношения величин и возможны три различных случая.
1. В цепи преобладает индуктивность, т.е. , а следовательно,
. Этому режиму соответствует векторная диаграмма на рис. 2,а.
2. В цепи преобладает емкость, т.е. , а значит, . Этот случай отражает векторная диаграмма на рис. 2,б.
3. — случай резонанса напряжений (рис. 2,в).
Условие резонанса напряжений
При этом, как следует из (1) и (2), .
При резонансе напряжений или режимах, близких к нему, ток в цепи резко возрастает. В теоретическом случае при R=0 его величина стремится к бесконечности. Соответственно возрастанию тока увеличиваются напряжения на индуктивном и емкостном элементах, которые могут во много раз превысить величину напряжения источника питания.
Пусть, например, в цепи на рис. 1 . Тогда , и, соответственно, .
Явление резонанса находит полезное применение на практике, в частности в радиотехнике. Однако, если он возникает стихийно, то может привести к аварийным режимам вследствие появления больших перенапряжений и сверхтоков.
Физическая сущность резонанса заключается в периодическом обмене энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, причем сумма энергий полей остается постоянной.
Суть дела не меняется, если в цепи имеется несколько индуктивных и емкостных элементов. Действительно, в этом случае , и соотношение (3) выполняется для эквивалентных значений L Э и C Э .
Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать
Резонансными кривыми называются зависимости тока и напряжения от частоты. В качестве их примера на рис. 3 приведены типовые кривые I(f); и для цепи на рис. 1 при U=const.
Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:
— и характеризующая “избирательные” свойства резонансного контура, в частности его полосу пропускания .
Другим параметром резонансного контура является характеристическое сопротивление , связанное с добротностью соотношением
или с учетом (4) и (5) для можно записать:
Резонанс в цепи с параллельно соединенными элементами
(резонанс токов)
Для цепи рис. 4 имеем
В зависимости от соотношения величин и , как и в рассмотренном выше случае последовательного соединения элементов, возможны три различных случая.
В цепи преобладает индуктивность, т.е. , а следовательно, . Этому режиму соответствует векторная диаграмма на рис. 5,а.
В цепи преобладает емкость, т.е. , а значит, . Этот случай иллюстрирует векторная диаграмма на рис. 5,б.
— случай резонанса токов (рис. 5,в).
Условие резонанса токов или
При этом, как следует из (8) и (9), . Таким образом, при резонансе токов входная проводимость цепи минимальна, а входное сопротивление, наоборот, максимально. В частности при отсутствии в цепи на рис. 4 резистора R ее входное сопротивление в режиме резонанса стремится к бесконечности, т.е. при резонансе токов ток на входе цепи минимален.
Идентичность соотношений (3) и (5) указывает, что в обоих случаях резонансная частота определяется соотношением (4). Однако не следует использовать выражение (4) для любой резонансной цепи. Оно справедливо только для простейших схем с последовательным или параллельным соединением индуктивного и емкостного элементов.
При определении резонансной частоты в цепи произвольной конфигурации или, в общем случае, соотношения параметров схемы в режиме резонанса следует исходить из условия вещественности входного сопротивления (входной проводимости) цепи.
Например, для цепи на рис. 6 имеем
Поскольку в режиме резонанса мнимая часть должна быть равна нулю, то условие резонанса имеет вид
откуда, в частности, находится резонансная частота.
Резонанс в сложной цепи
Условие резонанса для сложной цепи со смешанным соединением нескольких индуктивных и емкостных элементов, заключающееся в равенстве нулю мнимой части входного сопротивления или входной проводимости , определяет наличие у соответствующих этому условию уравнений относительно нескольких вещественных корней, т.е. таким цепям соответствует несколько резонансных частот.
При определении резонансных частот для реактивного двухполюсника аналитическое выражение его входного реактивного сопротивления или входной реактивной проводимости следует представить в виде отношения двух полиномов по степеням , т.е. или . Тогда корни уравнения дадут значения частот, которые соответствуют резонансам напряжений, а корни уравнения — значения частот, при которых возникают резонансы токов. Общее число резонансных частот в цепи на единицу меньше количества индуктивных и емкостных элементов в схеме, получаемой из исходной путем ее сведения к цепи (с помощью эквивалентных преобразований) с минимальным числом этих элементов. Характерным при этом является тот факт, что режимы резонансов напряжений и токов чередуются.
В качестве примера определим резонансные частоты для цепи рис. 7. Выражение входного сопротивления данной цепи имеет вид
Из решения уравнения получаем частоту , соответствующую резонансу напряжений, а из решения уравнения — частоту , соответствующую резонансу токов.
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А . Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Что такое резонанс напряжений, чем он характеризуется?
- Что такое резонанс токов, чем он характеризуется?
- В чем физическая сущность резонансных режимов?
- На основании каких условий в общем случае определяются резонансные частоты?
- В цепи на рис. 1 R=1 Ом; L=10 мГн; С=10 мкФ. Определить резонансную частоту и добротность контура. Ответ: .
- Какие условия необходимы и достаточны, чтобы в цепи на рис. 1 выполнялось соотношение ?
- Определить резонансную частоту для цепи на рис. 7, если в ней конденсатор С3 заменен на резистор R3. Ответ: .