Сумма токов направленных к узлу равна сумме токов направленных от узла
Основные определения, термины и понятия по военно-технической подготовке
Военно-техническая подготовка
Тактитка зенитных ракетных войск
Боевое применение зенитного ракетного комплекса
1.2. Постоянный ток
1.2.1. Законы Ома.
Закон Ома — эмпирический физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника.
В своей оригинальной форме он был записан его автором в виде :
>, \qquad(2)» width=»158″ height=»38″ /> ,
где ε — ЭДС источника напряжения;
I — сила тока в цепи;
R — сопротивление всех внешних элементов цепи;
r — внутреннее сопротивление источника напряжения.
Из закона Ома для полной цепи вытекают следствия:
При r сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.
,
где есть напряжение, или падение напряжения (или, что то же, разность потенциалов между началом и концом участка проводника), тоже называют «Законом Ома».
Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:
То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.
К другой записи формулы (3), а именно:
Рис 2.Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления
1.2.2. Правила Кирхгофа.
Правила Кирхгофа (часто, в литературе, называются не совсем корректно Законы Кирхгофа, название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного(«почти стационарного») тока.
Для формулировки правил Кирхгофа вводятся понятия узел , ветвь и контур электрической цепи.
Ветвью называют любой двухполюсник, входящий в цепь.
Узлом называют точку соединения трех и более ветвей.
Контур — замкнутый цикл из ветвей. Термин замкнутый цикл означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.
В терминах данных определений правила Кирхгофа формулируются следующим образом.
Первое правило.
Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла — отрицательным: Алгебраическая сумма токов, направленных к узлу равна сумме направленных от узла.
Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.
Особенности составления уравнений для расчёта токов и напряжений.
Если цепь содержит p узлов, то она описывается p— 1 уравнениями токов. Это правило может применяться и для других физических явлений (к примеру, система трубопроводов жидкости или газа с насосами), где выполняется закон сохранения частиц среды и потока этих частиц.
Если цепь содержит m ветвей, из которых содержат источники тока ветви в количестве mi , то она описывается m–mi– (p— 1) уравнениями напряжений.
Правила Кирхгофа, записанные для p— 1 узлов или m– (p— 1) контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и все напряжения.
Перед тем, как составить уравнения, нужно произвольно выбрать:
положительные направления токов в ветвях и обозначить их на схеме, при этом не обязательно следить, чтобы в узле направления токов были и втекающими, и вытекающими, окончательное решение системы уравнений всё равно даст правильные знаки токов узла;
положительные направления обхода контуров для составления уравнений по второму закону, с целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке).
Рис 3. Сколько тока втекает в узел, столько из него и вытекает.
Рис 4. На этом рисунке для каждой ветви обозначен протекающий по ней ток (буквой «I») и напряжение между соединяемыми ею узлами (буквой «U»).
Закон Кирхгофа
Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.
Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.
При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.
Ветвь – участок электрической цепи с одни и тем же током.
Узел – точка соединения трех или более ветвей.
Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.
При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.
1 закон Кирхгофа
В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.
Рис. 1. Схема параллельного соединения проводников.
Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.
Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.
Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.
Запишем первый закон Кирхгофа в комплексной форме:
Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда). Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.
Рис. 2. i_1+i_4=i_2+i_3.
Рассмотрим применение 1 закона Кирхгофа на следующем примере:
I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
Тогда мы можем записать: I1 = I2 + I3.
Аналогично для узла B: I3 = I4 + I5.
Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
Таким образом мы наглядно видим справедливость первого закона Кирхгофа.
2 закон Кирхгофа
При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).
Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:
Уравнение для постоянных напряжений — Уравнение для переменных напряжени —
Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:
Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.
Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.
При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.
Определить знак можно по алгоритму:
1. выбираем направление обхода контура (по или против часовой стрелки);
2. произвольно выбираем направления токов через элементы цепи;
3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).
Закон Ома является частным случаем второго правила для цепи.
Приведем пример применения второго правила Кирхгофа:
По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:
Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.
Решение задач
1. По приведенной схеме записать законы Кирхгофа для цепи.
2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.
Сумма токов направленных к узлу равна сумме токов направленных от узла
Законы Кирхгофа являются одной из форм закона сохранения энергии и потому относятся к фундаментальным законам природы.
Первый закон Кирхгофа является следствием принципа непрерывности электрического тока, в соответствии с которым суммарный поток зарядов через любую замкнутую поверхность равен нулю, т.е. количество зарядов выходящих через эту поверхность должно быть равно количеству входящих зарядов. Основание этого принципа очевидно, т.к. при нарушении его электрические заряды внутри поверхности должны были бы либо исчезать, либо возникать без видимых причин.
Если заряды перемещаются внутри проводников, то они образуют в них электрический ток. Величина электрического тока может измениться только в узле цепи, т.к. связи считаются идеальными проводниками. Поэтому, если окружить узел произвольной поверхностью s (рис. 1), то потоки зарядов через эту поверхность будут тождественны токам в проводниках образующих узел и суммарный ток в узле должен быть равным нулю.
Для математической записи этого закона нужно принять систему обозначений направлений токов по отношению к рассматриваемому узлу. Можно считать токи направленные к узлу положительными, а от узла отрицательными. Тогда для узла рис. 1 уравнение Кирхгофа будет иметь вид I 3 + I 4 — I 1 — I 2 = 0 или I 3 + I 4 = I 1 + I 2 .
Обобщая сказанное на произвольное число ветвей сходящихся в узле, можно сформулировать первый закон Кирхгофа следующим образом:
алгебраическая сумма токов в любом узле электрической цепи равна нулю
в любом узле сумма токов направленных к узлу равна сумме токов направленных от узла
, где p + q = n .
Очевидно, что обе формулировки равноценны и выбор формы записи уравнений может быть произвольным. Существенным является только соглашение о знаках токов для данной цепи, т.е. в пределах описания одной электрической цепи нельзя для разных узлов использовать разные знаки для токов направленных к узлам или от узлов .
При составлении уравнений по первому закону Кирхгофа направления токов в ветвях электрической цепи выбирают обычно произвольно . При этом необязательно даже стремиться, чтобы во всех узлах цепи присутствовали токи разных направлений. Может получиться так, что в каком-либо узле все токи сходящихся в нем ветвей будут направлены к узлу или от узла, нарушая тем самым принцип непрерывности. В этом случае в процессе определения токов один или несколько из них окажутся отрицательными, что будет свидетельствовать о протекании их в направлении противоположном принятому.
Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве. Если такое перемещение совершается по замкнутому контуру , то суммарная работа при возвращении в исходную точку будет равна нулю. В противном случае путем обхода контура можно было бы получать положительную энергию, нарушая закон ее сохранения.
Каждый узел или точка электрической цепи обладает собственным потенциалом и, перемещаясь вдоль замкнутого контура, мы совершаем работу, которая при возврате в исходную точку будет равна нулю. Это свойство потенциального электрического поля и описывает второй закон Кирхгофа в применении к электрической цепи.
Он также как и первый закон формулируется в двух вариантах, связанных с тем, что падение напряжения на источнике ЭДС численно равно электродвижущей силе, но имеет противоположный знак. Поэтому, если какая либо ветвь содержит сопротивление и источник ЭДС, направление которой согласно с направлением тока, то при обходе контура эти два слагаемых падения напряжения будут учитываться с разными знаками. Если же падение напряжения на источнике ЭДС учесть в другой части уравнения, то его знак будет соответствовать знаку напряжения на сопротивлении.
Сформулируем оба варианта второго закона Кирхгофа , т.к. они принципиально равноценны:
алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю
Примечание: знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;
алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжения на резисторах в этом контуре
, где p + q = n
Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.
Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.
С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.
Общее число уравнений N в системе равно числу ветвей N в минус число ветвей, содержащих источники тока N J , т.е. N = N в — N J .
Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число N 1 не может быть больше числа узлов N у минус один. Недостающие уравнения составляются по второму закону Кирхгофа, т.е.
N 1 = N у -1 ;
N 2 = N — N 1 = N в — N J — N 1.
Сформулируем алгоритм составления системы уравнений по законам Кирхгофа :
определить число узлов и ветвей цепи N у и N в ;
определить число уравнений по первому и второму законам N 1 и N 2 . ;
для всех ветвей (кроме ветвей с источниками тока) произвольно задать направления протекания токов;
для всех узлов, кроме одного, выбранного произвольно, составить уравнения по первому закону Кирхгофа;
произвольно выбрать на схеме электрической цепи замкнутые контуры таким образом, чтобы они отличались друг от друга по крайней мере одной ветвью и чтобы все ветви, кроме ветвей с источниками тока, входили по крайней мере в один контур;
произвольно выбрать для каждого контура направление обхода и составить уравнения по второму закону Кирхгофа, включая в правую часть уравнения ЭДС действующие в контуре, а в левую падения напряжения на резисторах. Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.
Рассмотрим этот алгоритм на примере рис 2.
Здесь светлыми стрелками обозначены выбранные произвольно направления токов в ветвях цепи. Ток в ветви с R 4 не выбирается произвольно, т.к. в этой ветви он определяется действием источником тока.
Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.
Число узлов цепи равно трем ( a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда
b ) I R 3 + I E 2 = I R 1 + I R 2 Ы I R 3 + I E 2 — I R 1 — I R 2 = 0
По второму закону Кирхгофа нужно составить два уравнения. Выберем два контура I и II так, чтобы все ветви, кроме ветви с источником тока попали по крайней мере в один из них, и зададим произвольно направление обхода как показано стрелками. Тогда
II) E 2 = I R 2 R 2
При выборе контуров и составлении уравнений все ветви с источниками тока должны быть исключены, т.е. контуры обхода не должны включать ветви с источниками тока. Это не означает что для контуров с источниками тока нарушается второй закон Кирхгофа. Просто при необходимости определения падения напряжения на источнике тока или на других элементах ветви с источником тока это можно сделать после решения системы уравнений. Например, на рис. 2 можно создать замкнутый контур из элементов R 3 , R 4 , J и E 2 , и для него будет справедливым уравнение
I R 3 R 3 + E 2 + JR 4 + U J = 0 ,
где U J — падение напряжения на источнике тока J.
Из сказанного выше очевидно, что законы Кирхгофа необязательно использовать в виде систем уравнений. Они справедливы всегда для любого узла и для любого замкнутого контура любой электрической цепи.
Современные средства математического анализа позволяют легко получить результат решения составленной выше системы уравнений, если она записана в матричной форме A ґ X = B . Это можно сделать, например, для токов в качестве неизвестных.
Каждая строка матрицы A должна соответствовать одному из уравнений (7)-(10). Поэтому в строки матрицы A нужно включить все коэффициенты при токах соответствующего уравнения, в той последовательности, в какой эти токи включены в координаты вектора неизвестных величин . Если какой-либо ток отсутствует в уравнении, то в качестве элемента матрицы нужно указать нуль. Для включения в матрицу уравнения по первому закону Кирхгофа удобнее записывать в форме (1) с нулевой правой частью, однако, для уравнения (7) нужно перенести ток источника J в правую часть, т.к. он не входит в число неизвестных.
Вектор неизвестных токов X представляет собой столбец, в который включены неизвестные токи в произвольной последовательности.
Вектор B представляет собой столбец, координатами которого являются источники электрической энергии, действующие в цепи (правая часть уравнений (7)-(10)). Порядок включения их в столбец должен соответствовать порядку записи уравнений в строки матрицы A .
Составим матричное уравнение для схемы рис. 2 , используя полученные ранее уравнения (7)-(8) и (9)-(10) .
Здесь для упрощения восприятия строки записи помечены указателями на тот узел или контур, которому они соответствуют.
Законы Кирхгофа и их применение
Для расчета разветвленной сложной электрической цепи существенное значение имеет число ветвей и узлов.
Ветвью электрической цепи и ее схемы называется участок, состоящий только из последовательно включенных источников ЭДС и приемников с одним и тем же током. Узлом цепи и схемы называется место или точка соединения трех и более ветвей (узлом иногда называют и точку соединения двух ветвей).
При обходе по соединенным в узлах ветвям можно получить замкнутый контур электрической цепи; каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям, при этом каждый узел в рассматриваемом контуре встречается не более одного раза.
На рис. 1.13 в качестве примера показана схема электрической цепи с пятью узлами и девятью ветвями. В частных случаях встречаются ветви только с резистивными элементами без источников ЭДС (ветвь 1 — у) и с сопротивлениями, практически равными нулю (ветвь 2 — р). Так как напряжение между выводами ветви 2 — р равно нулю (сопро-тивление равно нулю), то потенциалы точек 2 и р одинаковы и оба узла можно объединить в один.
Режим электрической цепи произвольной конфигурации полностью определяется первым и вторым законами Кирхгофа.
Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в узле равна пулю:
В этом уравнении одинаковые знаки должны быть взяты для токов, имеющих одинаковые положительные направления относительно узловой точки. В дальнейшем будем в уравнениях, составленных по первому закону Кирхгофа, записывать токи, направленные к узлу, с отрицательными знаками, а направленные от узла, — с положительными.
Если к данному узлу присоединен источник тока, то ток этого источника также должен быть учтен. В дальнейшем будет показано, что в ряде случаев целесообразно писать в одной части равенства (1.19а) алгебраическую сумму токов в ветвях, а в другой части алгебраическую сумму токов, обусловленных источниками токов:
где I — ток одной из ветвей, присоединенной к рассматриваемому узлу, a J — ток одного из источников тока, присоединенного к тому же самому узлу; этот ток входит в (1.196) с положительным знаком, если направлен к узлу, и с отрицательным, если направлен от узла.
Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом контуре алгебраическая сумма напряжений на всех элементах и участках цепи, входящих в этот контур, равна нулю:
при этом положительные направления для напряжений на элементах и учасчках выбираются произвольно; в уравнении (1.20а) положительные знаки принимаются для тех напряжений, положительные направления которых совпадают с произвольно выбранным направлением обхода контура.
Дополнительно по теме
Элементы электрических цепей и схем
Схемы замещения источников энергии
Закон Ома для участка цепи с ЭДС
Баланс мощностей для простой неразветвленной цепи
Законы Кирхгофа и их применение
Топологические графы
Законы Кирхгофа в матричной форме
Метод узловых потенциалов
Метод контурных токов
Уравнения цепи в матричной форме
Расширенные узловые уравнения
Преобразования в линейных электрических схемах
Часто применяется другая формулировка второго закона Кирхгофа: в любом замкнутом контуре алгебраическая сумма напряжений на всех участках с сопротивлениями, входящими в этот контур, равна алгебраической сумме ЭДС:
В этом уравнении положительные знаки принимаются для токов и ЭДС, положительные направления которых совпадают с произвольно выбранным направлением обхода рассматриваемого контура.
В теории электрических цепей решаются задачи двух типов. К первому типу относятся задачи анализа электрических цепей, когда, например, известны конфигурация и элементы цепи, а требуется определить токи, напряжения и мощности тех или иных участков. Ко второму типу относятся обратные задачи, в которых, например, заданы токи и напряжения на некоторых участках, а требуется найти конфигурацию цепи и выбрать ее элементы. Такие задачи называются задачами синтеза электрических цепей. Отметим, что решение задач анализа намного проще решения задач синтеза.
В практической электротехнике довольно часто встречаются задачи анализа. Кроме того, для овладения приемами синтеза цепей необходимо предварительно изучить методы их анализа, которые преимущественно и будут в дальнейшем рассматриваться.
Задачи анализа могут быть решены при помощи законов Кирхгофа. Если известны параметры всех элементов цепи и ее конфигурация, а требуется определить токи, то при составлении уравнений по законам Кирхгофа рекомендуется придерживаться такой последовательности: сначала выбрать произвольные положительные направления токов во всех ветвях электрической цепи, затем составить уравнения для узлов на основании первого закона Кирхгофа и, наконец, составить уравнения для контуров на основании второго закона Кирхгофа.
Пусть электрическая цепь содержит В ветвей и У узлов. Покажем, что на основании первого и второго законов Кирхгофа можно составить соответственно У — 1 и В — У + 1 взаимно независимых уравнений, что в сумме дает необходимое и достаточное число уравнений для определения В токов (во всех ветвях).
На основании первого закона Кирхгофа для У узлов (рис. 1.13) можно написать У уравнений:
Так как любая ветвь связывает между собой только два узла, то ток каждой ветви должен обязательно войти в эти уравнения 2 раза, причем I12=-I21; I13=-I31 и т.д.
Следовательно, сумма левых частей всех У уравнений дает тождественно нуль. Иначе говоря, одно из У уравнений может быть получено как следствие остальных У — 1 уравнений или число взаимно независимых уравнений, составленных на основании первого закона Кирхгофа, равно У — 1, т. е. на единицу меньше числа узлов. Например, в случае цепи по рис. 1.14,о с четырьмя узлами
Добавим к этим У — 1 = 3 уравнениям уравнение
Суммируя четыре уравнения, получаем тождество 0 = 0; следовательно, из этих четырех уравнений любые три независимые, например первые три (1.21а).
Так как беспредельное накопление электрических зарядов не может происходить как в отдельных узлах электрической цепи, так и в любых ее частях, ограниченных замкнутыми поверхностями, то первый закон Кирхгофа можно применить не только к какому-либо узлу, но и к любой замкнутой поверхности — сечению.
Например, для поверхности S (рис. 1.14,а), как бы рассекающей электрическую схему на две части, справедливо уравнение , что можно также получить из уравнений (1.21) для узлов 3 и 4.
Чтобы установить число взаимно независимых уравнений, вытекающих из второго закона Кирхгофа, напишем для всех В ветвей схемы (рис. 1.13) В уравнений на основании закона Ома (1.11а):
где — сопротивление ветви, со-единяющей узлы р и у; Еру — суммарная ЭДС, действующая в ветви р — у в направлении от р к у; — потенциалы узлов р и у.
В этих уравнениях суммарное число неизвестных токов В ветвей и потенциалов У узлов равняется В + У.
Не изменяя условий задачи, можно принять потенциал одного из узлов равным любому значению, в частности нулю. Если теперь из системы В уравнений (1.22) исключить оставшиеся неизвестными У — 1 потенциалов, то число уравнений уменьшится до В — (У — 1). Но исключение потенциалов из уравнений (1.22) приводит к уравнениям, связывающим ЭДС источников с напряжениями на резистивных элементах, т. е. к уравнениям, составленным на основании второго закона Кирхгофа.
Таким образом, число независимых уравнений, которые можно составить на основании второго закона Кирхгофа, равно В — (У- 1).
В качестве примера напишем уравнения, связывающие потенциалы узлов с токами и ЭДС для схемы рис. 1.14, а по ( 1.126):
Сложив третье и четвертое уравнения и вычтя полученную сумму из первого, получим
Если применим второй закон Кирхгофа (1.206) к контуру 1-4-2-1 (при обходе вдоль контура по направлению движения часовой стрелки), то получим это же уравнение.
Аналогичным путем можно получить уравнения для других контуров:
для контура 1-3-2-1
для котуpa 2-4-3-2
Совместное решение любых пяти уравнений (1.21), (1.23) и (1.24) дает значения токов во всех ветвях электрической цепи, показанной на рис. 1.14, а. Если и результате решения этих уравнений получится отрицательное значение для какого-либо тока, то это значит, что действительное направление противоположно принятому за положительное.
При записи уравнений по второму закону Кирхгофа следует обращать особое внимание на то, чтобы составленные уравнения были взаимно независимыми. Контуры необходимо выбрать гак. чтобы в них вошли все ветви схемы, а в каждый из контуров — возможно меньшее число ветвей. Контуры взаимно независимы, если каждый последующий контур, для которого составляется уравнение, имеет не меньше одной новой ветви и не получается из контуров, для которых уже написаны уравнения, путем удаления из этих контуров общих ветвей. Например, контур 1-3-4-2-1 (рис. 1.14, а) можно получить из контуров 1-3-4-1 и 1-4-2-1 путем удаления ветви 1-4. Поэтому уравнение для контура 1-3-4-2-1 является следствием уравнений (1.23), (1.24а) и получается путем их суммирования. Далее будет дано наиболее общее правило выбора контуров, обеспечивающих получение независимых уравнений.
Вторым законом Кирхгофа можно пользоваться для определения напряжения между двумя произвольными точками схемы. В этом случае необходимо ввести в левую часть уравнений (1.20) искомое напряжение вдоль пути, как бы дополняющего незамкнутый контур до замкнутого. Например, для определения напряжения U52 (рис. 1.14, а) можно написать уравнение для контура 2-1-5-2
или для контура 5-4-2-5
откуда легко найти искомое напряжение.
Пользуясь законами Кирхгофа, написать два выражения для тока I0 в ветви с гальванометром (рис. 1.15), приняв известным в одном случае ток I, а в другом напряжение U.
На основании законов Кирхгофа напишем для заданной схемы с шестью неизвестными токами уравнения:
Решив совместно эти уравнения, получим выражения для тока I0 при заданном напряжении U
и при заданном токе I
Для полной характеристики электрического состояния цепи надо знать не только токи и напряжения, но также мощности источников и приемников энергии.
В соответствии с законом сохранения энергии развиваемая всеми источниками мощность равна суммарной мощности приемников и мощности потерь в источниках (из-за внутренних сопротивлений)
В левой части (1.25) суммы алгебраические. Это значит, что если при заданных направлениях действия источника ЭДС (см. рис. 1.7) или тока (см. рис. 1.8) для тока I в источнике ЭДС или напряжения U12 на выводах источника тока получится отрицательное численное значение, то этот источник в действительности не разовьет мощность, а получит ее от других источников. Соответствующее слагаемое в левой части (1.25) получится со знаком минус. Если требуется найти необходимую мощность источников питания цепи, то такие слагаемые следует записать с обратным знаком в правой части (1.25).
Смотри ещё по теме Электрические цепи постоянного тока
Основные законы и методы расчета электрических цепей постоянного тока
Элементы электрических цепей и схем
Схемы замещения источников энергии
Закон Ома для участка цепи с ЭДС
Баланс мощностей для простой неразветвленной цепи
Законы Кирхгофа и их применение
Топологические графы
Законы Кирхгофа в матричной форме
Метод узловых потенциалов
Метод контурных токов
Уравнения цепи в матричной форме
Расширенные узловые уравнения
Преобразования в линейных электрических схемах
Основные свойства электрических цепей постоянного тока
Принцип наложения (суперпозиции)
Свойство взаимности
Входные и взаимные проводимости, коэффициенты передачи
Принцип компенсации. Зависимые источники
Общие замечания о двухполюсниках и многополюсниках
Линейные соотношения между напряжениями и токами
Теорема о взаимных приращениях токов и напряжений
Принцип эквивалентного генератора
Передача энергии от активного двухполюсника к пассивному