Автор закона являющегося основой всей электротехники постоянных токов
Перейти к содержимому

Автор закона являющегося основой всей электротехники постоянных токов

  • автор:

Электротехника-основы теории.

Л юбая электрическая цепь обязательно содержит в себе источник электрической энергии и ее приемник. В качестве примера рассмотрим простейшую электрическую цепь, состоящую из батарейки и лампочки накаливания.

Батарейка — это источник электрической энергии, лампочка — ее приемник. Между полюсами источника электроэнергии имеется разность потенциалов(+ и -), при замыкании цепи начинается процесс ее выравнивания под действием электродвижущей силы, сокращенно — ЭДС. По цепи протекает электрический ток, совершая работу — нагревая спираль эл.лампочки, спираль начинает светиться.

Таким образом происходит преобразование электрической энергии в энергию тепловую и энергию света.
Электрический ток(J) представляет из себя упорядоченное движение заряженных частиц, в данном случае — электронов.
Электроны имеют отрицательный заряд, и по этому, их движение направлено к положительному(+) полюсу источника питания.

При этом, всегда образуется электромагнитное поле, распостраняясь от (+) к (-) источника(навстречу движению электронов) через электрическую цепь со скоростью света. Традиционно, принято считать, что электрический ток(J) движется от положительного(+) полюса к отрицательному(-).

Упорядоченное движение электронов, через кристаллическую решетку вещества, являющегося проводником не проходит беспрепятственно. Электроны взаимодействуют с атомами вещества, вызывая его нагрев. Таким образом, вещество оказывает сопротивление(R), протекающему через него, электрическому току. И чем больше величина сопротивления, при той же величине тока — тем сильнее нагрев.

Электрическое сопротивление — это величина, характеризующая противодействие электрической цепи (или её участка) электрическому току, измеряется в омах. Электрическое напряжение(U)- величина разности потенциалов источника электрического тока. Электрическое напряжение(U), электрическое сопротивление(R),электрический ток(J) — это основные свойства простейшей электрической цепи, между собой они находятся в определенной зависимости.

Закон Ома для участка цепи.

Для участка замкнутой электрической цепи, справедливой является следующая зависимость:

J=U/R.

Это математическое соотношение носит название — закон Ома для участка цепи. С помощью этой формулы, можно вычислить значение любого из свойств цепи, зная значения двух остальных. Пользуясь «Треугольником Ома», изображенным на рисунке ниже, можно наглядно представить как это делается.

Изображение Треугольника Ома.

Закрываем пальцем неизвестную величину, требующую определения. Положение величин оставшихся не закрытыми, подскажет нам, что делать. Как вы сами видите, здесь как раз, возможны три варианта.
1.Чтобы найти силу тока делим величину напряжения на величину сопротивления — вертикальная линия внутри, символизирует деление.
2. Для нахождения сопротивления необходимо разделить величину напряжения на величину тока.
3. Неизвестную величину значения напряжения, получаем умножая величину силы тока на величину сопротивления.

Напряжение измеряется в вольтах(1 вольт), сила тока в амперах(1 ампер), сопротивление в омах(1 ом).

Пример вычисления. Нам известно напряжение источника электроэнергии(U)-2.5 вольт, сопротивление приемника(R) — 10 ом. Требуется узнать силу тока(J). Итак, подставляя известные значения в формулу закона Ома получаем: J=2.5/10; J=0.25 Полученое значение — 0,25 ампер.

Зная силу тока(J) и напряжение(U) можно узнать, мощность(P) потребляемую приемником электроэнергии. P=U*J; P=0.25*2.5; P=1 Итак, мощность нашего приемника(лампочки) — 1 ватт.

Общий Закон Ома. .

J=E/Rвнутр.+Rвнеш.

E в этой формуле обозначает, электродвижущую силу источника питания. Rвнутр.- величина внутреннего сопротивления источника электрического тока. Rвнеш.- величина сопротивления электрического приемника + сопротивление проводников цепи.

Электрическое напряжение(U) и ЭДС(E) имеют одну и ту же природу. ЭДС — это значение напряжения(U) на полюсах источника тока, без нагрузки(приемника энергии), при разомкнутой цепи. ЭДС цепи, всегда ВЫШЕ ее рабочего напряжения(U),когда цепь замкнута и приемник энергии(нагрузка) подключен.

Калькулятор закона Ома.

С помощью калькулятора Закона Ома, расположенного выше, можно легко вычислить значения силы тока, напряжения и сопротивления любого приемника электрической энергии. Так же, подставляя значения напряжения и тока, можно определить его мощность, и наоборот.

Например, необходимо узнать ток потребляемый эл. чайником, мощностью 2,2квт.
В графу «Напряжение» подставляем значение напряжения нашей сети в вольтах — 220.
В графу «Мощность», соответственно, вводим значение мощности в ваттах 2200 (2.2квт) Нажимаем кнопку «Узнать силу тока» — получаем результат в амперах — 10. Если далее нажать кнопку «Сопротивление» , можно узнать, в добавок и электрическое сопротивление нашего чайника, во время его работы — 22 ома.

Законы Кирхгофа. Параллельное и последовательное подсоединение.

На рисунке ниже, вы можете увидеть примеры параллельного и последовательного соединения приемников электрической энергии. При параллельном соединении концы питающих проводников приемников сходятся в общих узловых точках. Каждый приемник оказывается включенным на общее напряжение приложенное к этим точкам. При последовательном соединении приемники включаются один за другим. В электрических цепях с таким соединением протекает общий ток. Цепи где присутствует параллельное соединение, относятся к разветвленным цепям, и имеют точки,где сходятся три и более проводников.Эти точки называют узлами. Участки цепи соединяющие два узла, называют ветвями цепи. При установившемся электрическом токе количество электричества притекающего в единицу времени к узлу, равно количеству электричества,утекающего от узла за то же время. Получается, что сумма токов, направленных к узлу, равна сумме токов, направленных от узла.

∑*J=0

Это равенство является выражением первого закона Кирхгофа, который гласит: алгебраическая сумма токов в узле равна нулю.

Следствием из первого закона Кирхгофа, является формула, с помощью которой зная величину сопротивления каждого приемника в отдельности, можно определить полное сопротивление всех их, в целом.

R об =R 1 *R 2 / R 1 +R 2

Т.е. величина произведения всех сопротивлений складывается и делится на величину их суммы. В нашем случае, умножаем 2 раза по 10 и делим на сумму 10+10 . Получаем, общее сопротивление = 100/20, окончательный результат = 5. Итак общее сопротивление нашей цепи — 5 ом. Если параллельно соединено n равных между собой сопротивлений R то общее сопротивление

R об = R/n

Калькулятор параллельного соединения двух сопротивлений.

Величина сопротивления1.
Величина сопротивления2.
Общее сопротивление.
С помощью расположенного выше калькулятора, можно легко расчитать величину общего сопротивления для двух сопротивлений, подключенных параллельно.

Второй закон Кирхгофа гласит: в замкнутой электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на отдельных участках цепи. Согласно этому закону для схемы изображенной на рисунке ниже можно записать:

R об =R 1 +R 2

Т. е. при последовательном соединении элементов цепи общее сопротивление цепи равно сумме сопротивлений составляющих ее элементов, а напряжение распределяется между ними, пропорционально сопротивлению каждого.
Например, в новогодней гирлянде состоящей из 100 маленьких одинаковых лампочек, каждая из которых рассчитана на напряжение 2,5 вольт, включенной в сеть напряжением 220 вольт, на каждую лампочку будет приходиться 220/100=2,2 вольта.
И, конечно же, при таком раскладе она будет работать долго и счастливо.

Переменный ток.

Переменный ток в отличии от постоянного, не имеет постоянного направления. Например, в обычной бытовой эл. сети 220 вольт 50 герц, плюс с минусом меняются местами 50 раз в секунду. Законы Ома и Кирхгофа для цепи постоянного, тока применимы так же для цепей тока переменного, но только для электрических приемников обладающих активным сопротивлением в чистом виде, т. е. таких, как различные нагревательные элементы и лампочки накаливания.

Причем, все расчеты производятся с действующими значениями тока и напряжения. Действующее значение силы переменного тока численно равно эквивалентной по тепловому действию силе постоянного тока. Действующее значение Jперем.= 0,707*Jпост. Действующее значение Uперем.= 0,707*Uпост. Например в нашей домашней сети действующее значение переменного напряжения — 220 вольт, а максимальное (амплитудное) его значение = 220*(1 / 0,707) = 310 вольт.

Роль законов Ома и Кирхгофа, в повседневной жизни электрика.

Осуществляя свою трудовую деятельность, электрик (абсолютно любой и каждый), ежедневно сталкивается со следствиями этих фундаментальных законов и правил, можно сказать — живет в их реальности. Использует ли он теоретические знания, с большим трудом полученные в различных учебных заведениях, для выполнения повседневных трудовых обязанностей?
Как правило — нет! Чаще всего, просто — напросто, в отсутствии какой либо необходимости, это делать.

Ибо повседневная работа нормального электрика, состоит вовсе не из умственных вычислений, а наоборот — из четких, отточенных годами, физических действий. Нельзя сказать, что думать вовсе не приходиться. Совсем наоборот — ведь последствия необдуманных действий в этой профессии, обходятся порой, весьма дорого.

Иногда, встречаются среди электриков конструктора — любители, они же, чаще всего — рационализаторы. Эти люди, время от времени, используют имеющиеся у них теоретические знания с пользой для дела, разрабатывая и конструируя разнообразные устройства, как в личных целях, так и во благо родного производства. Без знания законов Ома и Кирхгофа, расчеты электрических цепей, составляющих схему будущего устройства совершенно невозможны.

В целом, можно сказать, что законы Ома и Кирхгофа являются в большей степени «инструментом» инженера — конструктора, нежели электромонтера.

Георг Симон ОМ (1787 — 1854) — биография.

Замечательный немецкий физик Георг Симон Ом, чье имя носит знаменитый закон электротехники и единица электрического сопротивления, родился 16марта 1789 г. в Эрлангене (федеральная земля Бавария). Его отец был известным в городе мастером-механиком. Мальчик Ом помогал отцу в мастерской и многому у него научился.

Отец Георга — Иоганн Вольфганг Ом, был потомственным слесарем, много времени уделявшим вопросам самообразования. Он женился на дочери эрлангенского кузнеца Марии Елизавете Беккин. Из 7 рожденных ею детей в живых осталось только трое, а сама она в 1799 умерла при родах. Иоганн Ом так и не оправился до конца жизни от потери «лучшей и нежнейшей из матерей», как он о ней говорил. Тогда его сыну Георгу было 10, Мартину -7, а дочери Барбаре — всего 5 лет. Воспитанием детей занимался отец, уделяя большое внимание их образованию.

Чтобы обеспечить семью, он ежедневно с утра до вечера занимался выполнением кузнечных и слесарных заказов, а каждую свободную минуту он посвящал детям. О том бесконечно многом, чем они обязаны отцу, впоследствии говорили оба сына слесаря Иоганна, ставшие профессорами: Георг — физиком, а Мартин — математиком. Даже на памятнике Ому в Мюнхене он изображен возле отца, крупного мужчины в рабочем фартуке, который, обняв за плечи восторженно внимающего ему сына, серьезно и нежно о чем-то рассказывает мальчику.

Учитель начальной школы подготовил Георга к поступлению в городскую гимназию В этом учебном заведении основное внимание уделялось изучению латыни и греческого языка. Что касается математики и особенно физики, то лишь занятия, которые проводил вместе с сыновьями дома Иоганн Ом, позволили им продвинуться в изучении этих наук. Из довольно ограниченных средств семьи всегда выделялись деньги для покупки книг по математике (они преобладали), но также по истории, географии, философии, педагогике, равно как и руководства по обработке металлов. Неудивительно, что у преклонявшегося перед наукой кузнеца появились знакомые (ставшие вскоре его друзьям), преподаватели университета. Они охотно занимались и с его одаренными сыновьями.

В 1805 Георг Симон Ом сам стал студентом Эрлангенского университета. При той подготовке, которая у него была, учиться в университете Георгу Ому было легко. Может быть, и по этой причине он с азартом окунулся в спорт (стал, в частности, лучшим бильярдистом и конькобежцем в университете), увлекся танцами. Отца такая перемена в сыне не могла не обеспокоить. Назревал первый и единственный раз в их жизни «конфликт отцов и детей». В результате Георг, проучившись в университете всего полтора года, покинул родительский дом, чтобы в швейцарском городке Готтштадте занять место преподавателя математики в частной школе. Так началась педагогическая деятельность Георга Ома.

Швейцария очаровала Георга. Ее природа, ее люди, в том числе его коллеги и ученики, крохотный городок, в котором самым большим зданием был старинный замок, в котором располагалась школа, наконец, хорошая зарплата — все это вызывало у него чувство восхищения, которым наполнены его письма домой. Огорчало лишь отсутствие ответных писем от отца, который был так глубоко травмирован размолвкой с сыном, что почти год не только не писал ему, но даже и отказывался читать его письма: Иоганну Ому казалось, что рухнули все надежды, которые он связывал со своим даровитым сыном. Время — лучший целитель. Постепенно переписка восстановилась, и отец, как и прежде, старался поддерживать Георга вниманием и советами.

Ом в 1911 все же вернулся в Эрланген, то уже в том же году сумел закончить университет, защитить диссертацию и получить ученую степень доктора философии. Более того, ему тут же была предложена в университете должность приват-доцента кафедры математики. Это было прекрасно, но всего через три семестра Георг Ом вынужден был по материальным соображениям искать другое место. Эти поиски были мучительными и долгое время безуспешными. Наконец пришло приглашение занять место учителя физики и математики в иезуитской коллегии Кельна. 37-летний Ом немедленно направился в Кельн.

Первым делом Георг проводит обследование всего парка приборов. Здесь обнаруживается, что многие приборы требуют ремонта, а то и замены. Но Ом не зря был прилежным учеником своего отца, который остается его первым советчиком. Тщательность работы, стремление как можно детальнее продумывать постановку экспериментов и готовить для них аппаратуру стало основой будущих успехов. Ом, который прежде уделял основное внимание математике, решительно и воодушевленно переключился на физику. Ома увлекли проблемы, связанные с протеканием электрических токов по проводникам.

Для характеристики проводников Ом в1820 г. ввел понятие «сопротивление», ему казалось, что проводник сопротивляется току. По-английски и по-французски сопротивление называется resistance, поэтому современный схемный элемент называется резистором, а первая буква R с легкой руки Ома до сих пор используется как обозначение резистора в схемах.
Школьникам наших дней, изучающим закон Ома, может показаться, что это — один из простейших законов физики: сила тока в проводнике прямо пропорциональна падению напряжения в нем и обратно пропорциональна сопротивлению. Но попробуйте мысленно перенестись в двадцатые годы 19 века!

Путь, по которому пошел Георг Ом, определялся ясным пониманием того, что первым делом нужно научиться количественно исследовать физическое явление. Для измерения тока уже раньше пытались использовать тот факт, что он вызывает нагревание проводника. Однако Г. Ом избрал для измерения тока не тепловое, а именно его магнитное действие, открытое Эрстедом. В приборе Ома ток, протекавший по проводнику, вызывал поворот магнитной стрелки, подвешенной на упругой расплющенной золотой проволочке. Экспериментатор, поворачивая микрометрический винт, к которому крепился верхний конец проволочки, добивался компенсации поворота, вызванного магнитным воздействием, и угол поворота этого винта и являлся мерилом тока.

Установка была смонтирована со всей возможной тщательностью и обеспечивала достаточную стабильность тока. Только после этого Ом устранил все первоначально имевшиеся источники неточностей и получил надежные результаты, касающиеся влияния на ток как геометрической формы проводников (их длины и сечения), так и их химического состава.

В 1826 в «Журнале физики и химии» появилась обширная статья Георга Ома «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата мультипликатора Швейггера» (так Ом называл применявшийся им гальванометр), в которой излагались основные результаты его исследований.

Публикация результатов опытов Ома в первое время не вызвала почти никаких отзывов. Узнав о работах Ома, сам великий Майкл Фарадей заинтересовался ими и выразил сожаление, что из-за незнания немецкого языка не может изучить их обстоятельнее. Что же касается немецких коллег Ома, то, когда, наконец, был опубликован пространный отзыв одного из них, его автор счел, что исследования Ома «не внушают серьезного уважения».

Тем не менее, хлопоты Ома о предоставлении ему годичного освобождения от учебных занятий ради возможности посвятить себя полностью научным исследованиям были в 1826 удовлетворены (правда, с сохранением лишь половинного оклада).
Георг Ом переезжает в Берлин, где живет и работает его брат Мартин, и ровно через год выходит обширная, содержащая 245 страниц, монография «Теоретическое исследование электрических цепей». Противники Ома не только отрицали его заслуги, но и активно мешали ему работать. Все хлопоты о месте, где можно было бы работать, оставались тщетными. Даже выступать в печати со своими доводами Ому было не просто.

«Нет пророка в своем отечестве!» Георг Ом в полной мере испытал это. Понимая важность полученных им научных результатов, он тщетно хлопотал о предоставлении ему той должности, которой он по праву заслуживал. Хотя срок его командировки в Берлин истекал, он считал невозможным оставить этот научный центр. В конце концов, ему предложили работу в Военной школе Берлина, но почти с символической нагрузкой — 3 часа в неделю (и с соответствующей оплатой). Ом, которого поддерживал брат, принял и такое предложение. Он продолжал упорно работать. В 1829 в «Журнале физики и химии» вышла еще одна его работа. В ней фактически закладывались принципиальные основы работы электроизмерительных приборов. В частности, был предложен используемый и сегодня эталон электрического сопротивления.

Только в 1833, через 6 лет после выхода основного труда Ома, ему предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ом немедленно перебрался в Нюрнберг. Вскоре его назначили инспектором по методике преподавания и поручили заведование кафедрой математики. В 1839 к этому добавились и обязанности ректора школы. Тогда же наметился и его переход на новую научную тематику: Ома привлекла акустика. В 1843 он показал, что простейшее слуховое ощущение вызывается гармоническими колебаниями, на которое ухо разлагает сложные звуки (акустический закон Ома).

Наметилось и международное признание. В 1841 работы Ома были переведены на английский язык, в 1847 — на итальянский, в 1860 — на французский. (Хотя перевода трудов Ома на русский язык не было, но именно работавшие в России Э. Х. Ленц и Б. С. Якоби первыми привлекли внимание широкой научной общественности к трудам Ома). В 1842 произошло событие, которое явилось первым важным знаком признания научных заслуг Георга Ома: он явился вторым немецким ученым, которого Лондонское Королевское общество наградило золотой медалью и избрало своим членом.

Наконец, через 20 лет ожидания, Георг Ом получил признание и на родине. В 1845 его избрали в Баварскую Академию Наук, а через четыре года пригласили в Мюнхен на должность экстраординарного профессора. Тогда же по королевскому указу он назначается хранителем государственного собрания физико-математических приборов и референтом по телеграфному ведомству при физико-техническом отделе Министерства государственной торговли. Одновременно он продолжает читать лекции по физике и по математике. Вся жизнь Георга Ома была отдана науке и поэтому семьи он не создал.

В 1852 исполнилось давнишнее желание Ома — он получил должность ординарного профессора. Но здоровье его уже пошатнулось. В 1854 он перенес серьезный сердечный приступ. 28 июня 1854 король Максимилиан издал указ об освобождении его от обязательного чтения лекций. Но до конца жизни ему оставалось всего 12 дней. Георг Ом скончался 6 июля 1854 года в половине одиннадцатого утра. Он был похоронен на старом южном кладбище города Мюнхена.

Исследования Георга Ома вызвали к жизни новые идеи, развитие которых вывело вперед учение об электричестве. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления — 1 Ом. Этот факт — дань уважения коллег, международное признание заслуг ученого.

Использован материал с сайта http://www.lgroutes.com/

Кирхгоф Густав Роберт (1824 — 1887) — биография.

Немецкий физик Густав Роберт Кирхгоф в Кёнигсберге. В 1846 г. он окончил Кёнигсбергский университет. Кирхгоф был профессором университетов в Бреслау (ныне Вроцлав, Польша) (1850) и Гейдельберге (1854); с 1875 г. он возглавлял кафедру математической физики в Берлинском университете.

Научную работу Кирхгоф начал, ещё будучи студентом. В 1845–1847 гг., занимаясь исследованием электрический цепей, он открыл закономерности протекания тока в разветвлённых цепях (правила Кирхгофа). В 1857 г. Кирхгоф опубликовал статью о распространении переменного тока по проводам, результаты которой во многом предвосхитили идеи Джеймса Максвелла, касающиеся электромагнитного поля.

В 1859 г. Кирхгоф занялся анализом связи между процессами испускания и поглощения света. На эти исследования его натолкнули наблюдения, сделанные ранее Л. Фуко и Дж. Стоксом, о близости положения в спектре Солнца тёмных (фраунгоферовых) D-линий и линий испускания в спектре Na. Вскоре он обнаружил интересное явление – обращение линий испускания в спектре Na при пропускании через пламя солнечного света: на месте светлых линий испускания появлялись отчётливые тёмные.

Как раз в это время к нему обратился Роберт Вильгельм Бунзен, занимавшийся анализом газов, основанным на наблюдении за изменением окраски пламени при введении в него разных элементов. Кирхгоф заметил, что метод анализа можно сделать более информативным, если наблюдать не просто окраску пламени, а его спектр. Совместная разработка этой идеи привела Бунзена и Кирхгофа к созданию спектрального анализа и открытию новых элементов – рубидия и цезия.

В 1859 г. на заседании Прусской академии наук Кирхгоф сделал сообщение об открытии закона теплового излучения, согласно которому отношение испускательной способности тела к поглощательной одинаково для всех тел при одной и той же температуре (закон Кирхгофа). В 1862 г. он ввел понятие «абсолютно чёрного тела» и предложил его модель – полость с небольшим отверстием. Разработка проблемы излучения «абсолютно чёрного тела» в конечном счёте привела к созданию квантовой теории излучения.

Кирхгоф внёс значительный вклад в обобщение теории дифракции Френеля, он занимался также теорией деформации твёрдых тел, колебанием пластин и дисков, движением тел в жидкой среде. Основные труды учёного – «Исследования спектра Солнца и спектров химических элементов» (1861–1862) и «Лекции по математической физике» (в четырёх томах, 1874–1894) сыграли большую роль в развитии теоретической физики.

Источники: 1. Биографии великих химиков. Перевод с нем. под ред. Быкова Г.В. – М.: Мир, 1981. 320 с. 2. Большая советская энциклопедия. В 30 тт.

Демирчян К.С., Нейман Л.Р, Коровкин Н.В, Чечурин В.Л. Теоретические основы электротехники

Демирчян К.С., Нейман Л.Р, Коровкин Н.В, Чечурин В.Л. Теоретические основы электротехники

В первом томе обобщены основные сведения об электромагнитных явлениях и сформулированы основные понятия и законы теории электрических и магнитных цепей. Описываются свойства линейных электрических цепей; приводятся методы расчета установившихся процессов в электрических цепях; рассматриваются резонансные явления в цепях и вопросы анализа трехфазных цепей. В учебник включены разделы, способствующие самостоятельному изучению сложного теоретического материала. Все разделы сопровождаются вопросами, упражнениями и задачами. К большинству из них приведены ответы и решения. Учебник предназначен для студентов высших технических учебных заведений, в первую очередь электротехнического и электроэнергетического направлений.

Во втором томе изложены методы анализа переходных процессов в электрических цепях, особое внимание уделено их численному анализу. Рассмотрены методы синтеза и диагностики электрических цепей, анализа четырехполюсников, а также установившихся и переходных процессов в электрических цепях с распределенными параметрами. Анализируются элементы нелинейных электрических цепей, приводится расчет нелинейных электрических и магнитных цепей. Даны основы теории колебаний и методов расчета переходных процессов в нелинейных электрических цепях. В учебник включены разделы, способствующие самостоятельному изучению сложного теоретического материала. Все разделы сопровождаются вопросами, упражнениями и задачами. К большинству из них приведены ответы и решения. Учебник предназначен для студентов высших технических учебных заведений, в первую очередь электротехнического и электроэнергетического направлений.

Теоретические основы электротехники. 4-е изд. Том 3

В третьем томе приведены уравнения электромагнитного поля и граничные условия на поверхностях раздела сред с различными свойствами, а также уравнения электростатического поля, электрического и магнитного полей постоянного тока и переменного электромагнитного поля. Приведены методы расчета электрической емкости и индуктивности, современные методы численного анализа электромагнитного поля. В учебник включены разделы, способствующие самостоятельному изучению сложного теоретического материала. Все разделы сопровождаются вопросами, упражнениями и задачами. К большинству из них приведены ответы и решения. Учебник предназначен для студентов высших технических учебных заведений, в первую очередь электротехнического и электроэнергетического направлений.

Предисловие

Курс «Теоретические основы электротехники» в нашей стране становился в течение всего ХХ в. в условиях интенсивного развития промышленности, а также масштабного производства, преобразования, передачи и расширяющихся областей применения энергии электромагнитного поля. В Ленинграде он создавался и развивался действительными членами Академии наук СССР В. Ф. Миткевичем, Л. Р. Нейманом и профессором П. Л. Калантаровым. После Великой Отечественной войны они создали и в 1948 г. издали уникальный учебник именно по курсу ТОЭ, который стал ведущим в СССР. Этот учебник был переведен и издан во многих странах и сыграл решающую роль в создании в них собственных школ по ТОЭ. В 1966 г. развитие курса ТОЭ нашло свое отражение в новом учебнике, созданном Л. Р. Нейманом и его учеником К. С. Демирчяном. Настоящий учебник по курсу ТОЭ выходит спустя 20 лет после его последнего, третьего издания.

Первоначальную программу работ по подготовке четвертого издания пришлось изменить после событий 1991 г. и последующего качественного изменения экономических и организационных основ мотивации подготовки научных и инженерных кадров в России. За 20 лет существенно изменились также технические средства вычислений и их доступность. Значительно повысилась роль информационных технологий в процессе обучения и профессиональной деятельности. В новый учебник пришлось ввести также и коррективы, связанные с уменьшением аудиторных часов непосредственного общения студентов с преподавателями и увеличением доли курса, осваиваемой самостоятельно. В этой связи учебник дополнен разделами, позволяющими обеспечить его самостоятельное освоение. Н. В. Коровкиным и В. Л. Чечуриным были разработаны и включены в учебник новые разделы, вопросы, методические указания, задачник и примеры решения наиболее типичных задач.

Столетний опыт преподавания курса ТОЭ в СССР и России показывает, что первоначальная ориентация курса на первичность понимания особенностей электромагнитных процессов в рассматриваемом конкретном устройстве над формально-расчетными методами приобретает все более важное значение. Развитие возможностей ЭВМ и их программного обеспечения в настоящее время и в перспективе таковы, что изучение расчетных методов для их освоения и развития перестает быть приоритетным. На передний план выступает необходимость понимания сути изучаемых явлений и методических основ стандартных программных средств для оценки надежности полученных численных и графических данных и их соответствия реальным особенностям рассчитываемого устройства или явления. Одной из важнейших задач предлагаемого учебника является создание у читателя именно умения и привычки вникать в суть физических явлений, происходящих в изучаемых системе или устройстве.

Следует отметить особую роль одного из авторов настоящего учебника, выдающегося ученого-электротехника, академика АН СССР Л. Р. Неймана, в развитии предмета и курса «Теоретические основы электротехники» не только в СССР, но и во многих странах, где этот предмет появился, благодаря его трудам и учебникам. Мне и моим ученикам В. Л. Чечурину и Н. В. Коровкину досталась почетная и трудновыполнимая задача быть достойными продолжать традиции, заложенные в курс ТОЭ его основателями — заведующими кафедрой ТОЭ Ленинградского политехнического института академиками АН СССР Владимиром Федоровичем Миткевичем, Леонидом Робертовичем Нейманом и профессором Павлом Лазаревичем Калантаровым.

Авторы считают своим долгом прежде всего поблагодарить профессора И. Ф. Кузнецова за его большой труд по редактированию настоящего учебника, заведующего кафедрой ТОЭ Санкт-Петербургского государственного политехнического университета профессора В. Н. Боронина — за организацию работы по созданию учебника, заведующего кафедрой ТОЭ Московского энергетического института, члена-корреспондента РАН П. А. Бутырина и профессора В. Г. Миронова, оказавших помощь при издании учебника.

Авторы благодарны доценту Е. Е. Селиной и старшему преподавателю Т. И. Королевой за помощь в разработке вопросов, упражнений и задач. Весьма полезной была помощь аспирантов А. С. Адалева, Ю. М. Балагулы, Т. Г. Миневич, М. В. Эйдемиллера, которые подготовили решения предлагаемых задач, что помогло им при завершении работы над диссертациями. Авторы признательны кандидату технических наук А. Н. Модулиной и инженеру В. А. Кузьминой за неоценимую помощь в подготовке рукописи к печати, а также доценту Р. П. Кияткину и всем сотрудникам кафедры ТОЭ Санкт-Петербургского государственного политехнического университета, сделавшим полезные замечания при обсуждении новых разделов учебника на основе использованных в настоящем издании методических разработок кафедры.

Завершению и оформлению издания настоящего учебника в решающей степени способствовала финансовая помощь РФФИ.

Введение

Теоретическая электротехника в России и СССР развивалась на основе признания материальности электромагнитного поля и важности понимания картины протекания рассматриваемых физических процессов для их практического использования и описания в виде математических моделей. Развитие этой школы в течение ХХ столетия отличается освоением достижений в областях, главным образом, физики электромагнитных явлений и прикладной математики. Характерным для этого периода для ученых России и СССР следует считать практическую неделимость исследований физических явлений, разработки моделей этих явлений и решения прикладных задач, связанных с расчетом исследуемых физических величин.

Первые труды в области электричества в России принадлежат гениальному русскому ученому академику М. В. Ломоносову. М. В. Ломоносов, создавший в разных областях науки много замечательных трудов, посвятил большое число работ изучению электричества. В своих теоретических исследованиях он выдвигал положения, которые значительно опережали его эпоху, и ставил проблемы исключительной глубины. Так, по его предложению в 1755 г. Академия наук выдвинула в качестве конкурсной темы на премию задачу «сыскать подлинную электрической силы причину и составить точную ее теорию».

Современником М. В. Ломоносова был русский академик Ф. Эпинус. Ему принадлежит приоритет открытия термоэлектрических явлений и явления электростатической индукции. Особо следует отметить сделанный им в 1758 г. в Академии наук доклад на тему «Речь о родстве электрической силы и магнетизма».

В настоящее время нам хорошо известно, что между электрическими и магнитными явлениями существует неразрывная связь, и это положение лежит в основе современного учения об электромагнитных явлениях. Однако к такому убеждению научная мысль пришла лишь в итоге длительного накопления опытных фактов, и в течение долгого времени явления электрические и явления магнитные рассматривались как самостоятельные, не имеющие между собой связи. Первое обстоятельное научное сочинение о магнитных и электрических явлениях, принадлежащее Гильберту, вышло в 1600 г. В этом труде Гильберт пришел, однако, к неправильному заключению, что электрические и магнитные явления не имеют между собой связи.

Сходство между механическим взаимодействием электрически заряженных тел и механическим взаимодействием полюсов магнитов естественно привело к попытке одинаково объяснить эти явления. Возникло представление о положительной и отрицательной магнитных массах, распределенных на концах магнита и являющихся причиной магнитного взаимодействия. Однако подобное предположение, как нам теперь известно, не отвечает физической природе магнитных явлений. Оно возникло исторически по аналогии с представлением о положительном и отрицательном электричестве, отвечающем физической сущности электрических явлений. Согласно современным представлениям, электрический заряд любого тела образуется совокупностью зарядов, находящихся в непрерывном движении положительно или отрицательно заряженных элементарных частиц — протонов, электронов и т. д.

Количественные соотношения, характеризующие механические взаимодействия электрически заряженных тел и механические взаимодействия магнитных масс полюсов магнита, первым опубликовал в 1785 г. Кулон. Но уже Кулон обратил внимание на существенное различие между магнитными массами и электрическими зарядами.

Различие вытекает из следующих простых опытов. Нам без труда удается отделить друг от друга положительный и отрицательный электрические заряды, но никогда и ни в каких условиях не удается произвести опыт, в результате которого оказались бы отделенными друг от друга положительная и отрицательная магнитные массы. В связи с этим Кулон высказал предположение, что отдельные малые элементы объема магнита при его намагничивании обращаются в маленькие магнитики и что лишь внутри таких элементов объема положительные магнитные массы смещаются в одном направлении, а отрицательные — в противоположном направлении.

Однако если бы положительная и отрицательная магнитные массы имели самостоятельное существование внутри элементарных магнитиков, то все же можно было бы надеяться в каком-либо опыте, в котором осуществлялось бы непосредственное воздействие на эти элементарные магнитики, отделить отрицательную массу от положительной подобно тому, как, воздействуя на молекулу, имеющую суммарный электрический заряд, равный нулю, нам удается расщепить ее на отрицательно и положительно заряженные частицы — так называемые ионы. Но и в элементарных процессах никогда не обнаруживаются раздельно существующие положительная и отрицательная магнитные массы.

Раскрытие действительной природы магнитных явлений относится к началу позапрошлого столетия. Этот период знаменуется рядом замечательных открытий, установивших теснейшую связь между явлениями электрическими и явлениями магнитными.

В 1820 г. Эрстед произвел опыты, в которых обнаружил механическое воздействие электрического тока на магнитную стрелку.

В 1820 г. Ампер показал, что соленоид с током по своим действиям аналогичен магниту, и высказал мысль, что и для постоянного магнита действительной причиной возникновения магнитных действий являются также электрические токи, замыкающиеся по некоторым элементарным контурам внутри тела магнита. Эти идеи нашли конкретное выражение в современных представлениях, согласно которым магнитное поле постоянного магнита обусловлено элементарными электрическими токами, существующими в веществе магнита и эквивалентными магнитным моментам элементарных частиц, образующих вещество. В частности, эти элементарные токи являются результатом вращения электронов вокруг своих осей, а также вращения электронов по орбитам в атомах.

Таким образом, мы приходим к убеждению, что магнитных масс в действительности не существует.

Всеми упомянутыми исследованиями было установлено важнейшее положение, что движение электрически заряженных частиц и тел всегда сопровождается магнитными явлениями. Этим самым уже было показано, что магнитные явления не представляют собой, как полагал Гильберт, чего-либо самостоятельного, никак не связанного с явлениями электрическими. В 1831 г. Фарадей сообщил об открытии явления электромагнитной индукции. Он обнаружил возникновение электрического тока в контуре, движущемся относительно магнита или относительно другого контура с током. Таким образом, было показано, что и электрические явления могут возникать как следствие процессов, относящихся к области магнитных явлений.

В 1833 г. русский академик Э. Х. Ленц впервые сформулировал чрезвычайно важное положение, в котором устанавливались общность и обратимость явлений, открытых Эрстедом и Фарадеем. В этом положении содержалась основа важного принципа обратимости электрических машин. Э. X. Ленц установил правило определения направления индуктированного тока, выражающее фундаментальный принцип электродинамики — принцип электромагнитной инерции.

В связи со всеми этими открытиями необходимо особенно отметить основную идею, которой неизменно руководствовался в своих исследованиях Фарадей и которая была развита в трудах академика В. Ф. Миткевича, — идею о физической реальности процесса, совершающегося в пространстве между электрически заряженными телами и между контурами с электрическими токами. Согласно этим представлениям, взаимодействие заряженных тел, а также взаимодействие контуров с токами осуществляются через посредство окружающего их электромагнитного поля, являющегося особым видом материи.

Заслуга создания теории электромагнитного поля принадлежит Максвеллу, изложившему ее в классическом труде «Трактат об электричестве и магнетизме », вышедшем в 1873 г. Этот трактат содержит изложение в математической форме и дальнейшее углубление и расширение основных физических идей Фарадея.

Экспериментальное подтверждение и развитие максвелловой теории электромагнитного поля осуществлены Герцем (1886–1889 гг.) в его замечательных опытах по получению и распространению электромагнитных волн, в работах П. Н. Лебедева (1895 г.) по генерированию и распространению электромагнитных волн весьма короткой длины, в его классических опытах (1900–1910 гг.), в которых было экспериментально доказано давление света, в изобретении радио А. С. Поповым (1895 г.) и в осуществлении им радиосвязи, а также во всем дальнейшем развитии практической и теоретической радиотехники.

Все перечисленные открытия привели к признанию глубокой связи между явлениями электрическими и явлениями магнитными. В общей совокупности теоретических проблем, относящихся к области электромагнитных явлений, все большее развитие получает теория электрических и магнитных цепей. В основе теории электрических цепей лежат законы, установленные Омом (1827 г.), Джоулем (1841 г.), Ленцем (1842 г.) и Кирхгофом (1847 г.). В последующую разработку этой теории большой вклад внесли многие отечественные и зарубежные ученые.

В настоящее время в связи с чрезвычайным усложнением электроэнергетических систем, радиотехнической и электроизмерительной аппаратуры, систем автоматического контроля и управления, быстродействующих электронных вычислительных машин и информационных технологий возникает необходимость создания обобщенных методов анализа, при которых целые комплексы элементов электрической цепи, являющиеся частями этих сложных систем и выполняющие определенные функции, рассматриваются с помощью их обобщенных параметров. Такими комплексами элементов цепи являются, например, генерирующие, передающие или преобразующие электромагнитную энергию устройства в электроэнергетических системах, генераторы, усилители и преобразователи сигналов в системах проводной связи, радио- и телепередачи, электрических измерений и автоматического управления и контроля, источники питания, блоки, выполняющие логические операции в электронных вычислительных машинах, дискретные цифровые преобразователи и т. п.

Эти отдельные комплексы включают в себя линейные элементы цепи, параметры которых не зависят от тока, например резисторы, индуктивные катушки, конденсаторы, а также нелинейные элементы цепи с параметрами, зависящими от тока или напряжения, например электронные лампы, транзисторы, индуктивные катушки с ферромагнитными сердечниками. Эти элементы цепи различным образом соединены между собой и образуют уже внутри таких комплексов достаточно сложные электрические цепи. Сами же комплексы, в свою очередь, тем или иным способом соединяются между собой, образуя сложные системы.

Обобщенные методы анализа сложных систем дают возможность исследовать взаимодействие этих отдельных комплексов, являющихся частями системы. Исходными для построения таких обобщенных методов являются те же основные физические законы электрических цепей — законы Ома и Кирхгофа, которые используются и для расчета сравнительно несложных электрических цепей.

Точно так же получает дальнейшее развитие теория электромагнитного поля в связи с развитием наземной и космической радиосвязи и радиоастрономии, а также со все более широким использованием электрических и магнитных полей и электромагнитных излучений в новых электротехнологических и электрофизических установках.

Все изложенное предъявляло всегда и особенно предъявляет в настоящее время требования к организации на высоком научном уровне высшего электротехнического образования. В этом отношении исторически имело большое значение создание первых научных дисциплин для высшей школы, в которых излагались теоретические проблемы электротехники. В 1904 г. профессор В. Ф. Миткевич начал читать в Петербургском политехническом институте созданный им курс «Теория явлений электрических и магнитных», а затем курс «Теория переменных токов». В 1905 г. профессор К. А. Круг начал чтение в Московском высшем техническом училище своего курса «Теория переменных токов», а затем курса «Основы электротехники».

В последующем эти теоретические дисциплины развивались в соответствии с новыми физическими идеями, новыми теоретическими и экспериментальными методами исследования электромагнитных явлений и исключительно быстрым развитием технических применений этих явлений и образовали дисциплину, имеющую ныне наименование «Теоретические основы электротехники».

Курс «Теоретические основы электротехники» содержит четыре части. Первая, сравнительно короткая часть, именуемая «Основные понятия и законы теории электромагнитного поля и теории электрических и магнитных цепей», содержит обобщение понятий и законов из области электромагнитных явлений на основе сведений, полученных в курсе физики, и развитие формулировок и определений основных понятий и законов теории электрических и магнитных цепей, относящихся ко всем разделам этой теории. Эта часть должна рассматриваться как связывающая курс физики с курсом теоретических основ электротехники и обеспечивающая физическое представление о процессах, происходящих в электрических и магнитных цепях и в электромагнитных полях. Она имеет большое значение для правильной математической формулировки задач, решаемых методами, излагаемыми в последующих частях курса. Освоение материала этой части имеет важное значение в связи с тем, что программное обеспечение современных и перспективных ЭВМ способно реализовать численные расчеты для широкого спектра математических моделей. Чтобы избегать ошибочных трактовок результатов расчета, представленных в виде численных и графических данных, специалистам необходимо глубокое понимание физической сути изучаемого явления.

Вторая, наибольшая по объему часть курса именуется «Теория линейных электрических цепей». В ней излагаются свойства линейных электрических цепей и методы расчета процессов в таких цепях. В основном в этой части рассмотрены методы анализа цепей, т. е. определение процессов в заданных цепях, но также уделяется внимание и синтезу и диагностике цепей, т. е. вопросам о построении электрических цепей с наперед заданными свойствами и методам экспериментального определения параметров реальных устройств. Линейными называют цепи, параметры всех элементов которых не зависят от тока и напряжения. По отношению к ним применим важный принцип, называемый принципом наложения. По принципу наложения следствия, вызываемые в некоторой физической обстановке совместным действием нескольких однородных причин, являются суммой следствий, вызываемых в той же физической обстановке каждой из этих причин в отдельности. Использование этого принципа дает возможность распространить результаты, полученные для простых случаев, на случаи более сложные. И наоборот, применение этого принципа позволяет расчленить сложную задачу на несколько более простых. Мы будем широко пользоваться принципом наложения при изучении линейных электрических цепей, а также при изучении электромагнитных полей в линейных средах, параметры которых не зависят от интенсивности процесса.

Третья часть имеет наименование «Теория нелинейных электрических и магнитных цепей». В ней излагаются свойства нелинейных электрических и магнитных цепей и методы расчета происходящих в них процессов. Параметры таких цепей зависят от тока, напряжения или магнитного потока, и это приводит к существенному усложнению математического анализа процессов в этих цепях. Вместе с тем эти вопросы имеют большое значение в связи с широким использованием элементов цепей с нелинейными характеристиками в современных устройствах.

Последняя, четвертая, часть имеет наименование «Теория электромагнитного поля». Многие электротехнические проблемы не могут быть полностью рассмотрены при помощи теории цепей и могут быть решены лишь методами теории электромагнитного поля. Прежде всего, для расчета параметров электрических и магнитных цепей необходимо знать электрические и магнитные поля, связанные с этими цепями. Это вполне закономерно, так как параметры электрических и магнитных цепей, фактически, отражают в себе в интегральной форме конфигурацию электрических и магнитных полей, связанных с рассматриваемыми цепями, и физические свойства среды, в которой существуют эти поля. Ряд весьма важных вопросов может быть решен только методами, развиваемыми только в теории поля. К таким вопросам относятся, например, излучение электромагнитных волн антенной и распространение их в пространстве. Наличие основных закономерностей, сформулированных в первой части курса, дает возможность начать рассмотрение теории электромагнитного поля с общих уравнений, характеризующих это поле в целом, и показать, что случаи, в которых выявляется только электрическое или только магнитное поле, представляют собой частные случаи, когда условия наблюдения таковы, что в некоторой ограниченной области пространства обнаруживается только одна сторона электромагнитного процесса. Этим ярко выделяется мысль о единстве электрических и магнитных явлений.

В учебник введено большое количество новых методических материалов в виде вопросов, указаний и примеров решения наиболее типичных задач, а также задачник. Эти новые разделы помогут восполнить ущерб, нанесенный непосредственному общению студентов с преподавателями в связи с уменьшением аудиторных часов. Они могут быть полезными для более сознательного и эффективного освоения тех разделов курса, которые должны быть изучены самостоятельно.

Вопросы, упражнения и задачи группируются так, чтобы они охватывали несколько глав теоретического курса. Например, группа новых методических материалов следует после первой части курса (физические основы электротехники). Следующая группа вопросов, упражнений и задач объединяет второй раздел курса —основные понятия теории электрических и магнитных цепей. Таким образом, при изучении курса появляется возможность, используя эти методические материалы, закрепить полученные теоретические знания.

Сложность предлагаемых вопросов и упражнений различна, вопросы и упражнения по разделу курса расположены по мере возрастания их сложности. Наиболее сложные упражнения выделены в группы задач.

Подбор вопросов, упражнений и задач осуществлялся из соображений не только усвоения теоретической части курса, но и более углубленного понимания и изучения наиболее сложных идей и методов теоретической электротехники. Некоторые из предлагаемых вопросов и задач могут оказаться трудными для изучающих курс студентов, но будут полезными не только для них, но и для аспирантов и инженеров.

Заключенные в скобки буквы (О) и (Р) в разделах «Вопросы, упражнения, задачи к главам. » означают, что в конце тома приведены ответ или решение на соответствующий вопрос, упражнение или задачу.

Содержание, расположение и изложение этого методического материала в учебнике таковы, что существенно облегчается процесс заочного или самостоятельного освоения курса ТОЭ.

Закон Ома

Физика — наука эмпирическая. Ее основные законы вытекают из практического опыта и частенько много лет не имеют теоретических обоснований. Именно так обстоит дело с главным законом электротехники, который открыл в 1826 году выдающийся немецкий ученый Георг Симон Ом.

Электрические явления люди наблюдали сотни лет. Но никак не связывали между собой заряженность потертого янтаря и молнию. Только на исходе XVIII столетия электричество стали внимательно исследовать. В 1795 году Алессандро Вольта изобрел «вольтов столб», химическую батарею, и обнаружил появление тока в проводнике, соединяющем ее полюса. Сферы применения электричества стремительно множились, и появилась острая необходимость в расчетных формулах для инженеров. Эту задачу решали многие ученые, но первым сформулировал главную формулу электротехники именно Георг Ом. Он ввел в обиход понятие сопротивления и опытным путем установил зависимость между основными характеристиками электрической цепи.

Определение закона Ома простыми словами

Электрическая цепь состоит из двухполюсного источника напряжения, то есть батареи, аккумулятора или генератора. Если полюса источника соединить проводами, то по ним потечет электрический ток. Его величина определяется сопротивлением проводников. Наглядное представление этой зависимости — обыкновенный водопровод. Аналогом источника напряжения является насос или водонапорная башня, создающая давление в магистрали, количество воды, прошедшее по трубе, — подобие силы тока, а кран соответствует сопротивлению. Полностью открытый, он не ограничивает поток, по мере закручивания отверстие для воды уменьшается, пока не закроется совсем.

Закон Ома для участка цепи

Опытным путем исследователь установил взаимосвязь характеристик электрической цепи. Классическая формулировка закона Ома звучит так:

«Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению».

Формула закона Ома для участка цепи

В таком виде закон Ома приведен в школьных учебниках физики. Согласно этой простой формуле, для определения уровня тока в проводнике достаточно величину напряжения на его сторонах разделить на некий условно постоянный коэффициент, то есть на сопротивление. Почему «условно»? Потому что величина сопротивления может меняться в зависимости от температуры. Поэтому, кстати, лампы накаливания чаще всего перегорают при включении. Сопротивление холодной спирали ниже, чем нагретой, скачок тока при подаче напряжения вызывает ее резкое расширение и разрыв. Но если этот момент преодолен и нить накала уцелела, то ее сопротивление растет, и ток ограничивается. А при температуре жидкого гелия, например, сопротивление падает до нуля, наступает сверхпроводимость.

Закон Ома для замкнутой полной цепи

Предыдущая формулировка годится только для участка цепи, где отсутствует сам источник электродвижущей силы. В реальности ток течет по замкнутому контуру, где обязательно есть батарея или генератор, имеющий собственное внутреннее сопротивление. Поэтому формула закона Ома для полной цепи выглядит несколько сложнее

Формула закона Ома для замкнутой полной цепи

Применение закона Ома

Георг Ом дал в руки инженеров средство для решения задач, связанных с электрическими цепями. Тепловые и световые приборы, электродвигатели, генераторы, линии электропередач, кабели связи рассчитываются на основе этой простой формулы. Нет такой области электротехники, где она не находит применения. Даже в радиотехнике используется закон Ома, но в дифференциальной форме. «Все гениальное — просто», как считали Еврипид, Леонардо да Винчи, Наполеон Бонапарт и Альберт Эйнштейн, несомненные гении. Закон Ома целиком и полностью подтверждает эту истину.

1.3. Основные законы цепей постоянного тока

Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

Закон Ома для участка цепи

Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома

Рис. 1.3

или UR = RI.

В этом случае UR = RI – называют напряжением или падением напряжения на резисторе R, а – током в резисторе R.

При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:

.

В этом случае закон Ома для участка цепи запишется в виде:

Закон Ома для всей цепи

Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r0 (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r0 + R всей цепи:

.

Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) I — I1 — I2 = 0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

,

где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rк в контуре; Uк = RкIк – напряжение или падение напряжения на к-м элементе контура.

Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю

.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):

В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

Скорость преобразования электрической энергии в другие виды представляет электрическую мощность

.

Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

.

Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение E I подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение E I подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:

При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См)

Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1мA = 10–3А), килоампер (1кA = 103А), милливольт (1мВ = 10–3В), киловольт (1кВ = 103В), килоом (1кОм = 103Ом), мегаом (1мОм = 106Ом), киловатт (1кВт = 103Вт), киловатт-час (1кВт-час = 103 ватт-час).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *