Электрические цепи для чайников: определения, элементы, обозначения
Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!
Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.
Электрические цепи
Электрическая цепь – это совокупность устройств, по которым течет электрический ток.
Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:
Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.
Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.
Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.
По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.
Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.
Элементы электрических цепей
Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.
Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.
Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.
Существуют условные обозначения для изображения элементов цепи на схемах.
Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.
Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.
Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.
При решении задач и анализе схем используют следующие понятия:
- Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
- Узел – соединение ветвей цепи;
- Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.
Чтобы понять, что есть что, взглянем на рисунок:
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Классификация электрических цепей
По назначению электрические цепи бывают:
- Силовые электрические цепи;
- Электрические цепи управления;
- Электрические цепи измерения;
Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.
Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.
Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.
Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.
Расчет электрических цепей
Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.
Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:
Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов
Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!
Электрические цепи и их элементы
Любая электрическая цепь состоит из различных объектов и устройств, которые создают оптимальные условия для прохождения электрического тока. Для того чтобы описать электромагнитные процессы, которые происходят в каждом устройстве, применяются такие понятия, как ток, напряжение и электродвижущая сила.
Электрические цепи: понятие, классификация элементов и источников
Электрическая цепь – это совокупность электротехнических устройств, которые образуют путь для нормального прохождения электрического тока и которые предназначены для распределения, передачи и взаимного преобразования электрической и другой энергии.
Электрические цепи, в которых образуется электрическая энергия, а ее преобразование и передача осуществляется при неизменных напряжениях, называются цепями постоянного тока.
В таких цепях магнитные и электрические поля во времени не изменяются. Поскольку напряжения и токи постоянны, то изменения во времени этих величин приравниваются нулю:
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Поэтому ток через емкость и напряжение на индуктивности, которые зависят от этих величин, также приравниваются нулю:
Исходя из этого, можно сделать вывод, что сопротивление постоянному току в индуктивности равно нулю, а емкость, напротив, — это бесконечно большое сопротивление. Поэтому катушка индуктивности в цепи постоянного тока представляет собой обычный провод, сопротивлением которого можно пренебречь, а емкость – это разрыв электрической цепи.
Все элементы электрической цепи условно можно классифицировать на три составные части:
- Источники питания. Все элементы цепи, что относятся к данной группе, вырабатывают электрическую энергию.
- Преобразующие элементы. Элементы, которые относятся ко второй группе, преобразуют электричество в другие виды энергии. В физике они известны как приемники.
- Передающие устройства. К третьей группе относятся передающие устройства. Это провода и другие установки, которые обеспечивают качество и уровень напряжения.
«Электрические цепи и их элементы»
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети
В источниках электрической энергии происходит преобразование химической, механической, тепловой и других видов энергии в электрическую. К источникам электроэнергии можно отнести:
- гальванические элементы;
- электромагнитные генераторы;
- термопреобразователи.
В приемниках электрической энергии (электротермические устройства, электродвигатели, лампы накаливания, электролизные ванны, резисторы) электроэнергия преобразуется в световую, тепловую, химическую, механическую.
Схемы электрических цепей
Элементы электрических цепей соединяются в схемы разными способами. Для каждой из схем существуют определенные закономерности, которые сформулированы и установлены учеными Омом и Кирхгофом.
Соединение потребителей в электрических цепях может быть трех видов:
- Последовательное соединение. В таком случае с увеличением количества потребителей происходит увеличение общего сопротивления электрической цепи. Из этого следует, что значение общего сопротивления состоит из суммы сопротивлений подключенной нагрузки. Поскольку во всех участках электрической цепи протекает одинаковый ток, то на каждый отдельный элемент распределяется только часть общего напряжения. Если какое-то устройство или прибор останавливает свою работу, то происходит разрыв электрической цепи. Иными словами, если из строя выйдет хотя бы одна лампочка, остальные тоже не будут работать (например, елочная гирлянда). Но в последовательную цепь можно включить огромное количество элементов, каждый из которых рассчитан на меньшее напряжение.
- Параллельное соединение. При такой схеме к двум точкам электрической цепи подключается несколько потребителей. На каждом участке напряжение будет приравниваться тому напряжению, которое приложено к каждой узловой точке. Данная схема позволяет увидеть возможность протекания электрического тока различными путями. Ток, который протекает у места разветвления, дальше проходит по двум нагрузкам, что имеют определенное сопротивление. В результате этого он приравнивается сумме токов, которые расходятся от данной точки. Происходит снижение сопротивления с увеличением ее общей проходимости. Благодаря соединению обеспечивается независимая работа потребителей. Если из строя выйдет один из них, то остальные потребители будут работать слаженно, поскольку цепь не разрывается.
- Комбинированное соединение. Большинство приборов на практике включаются в электрическую цепь сразу двумя способами (параллельно и последовательно). Поэтому подобные соединения носят название комбинированные. Например, вся защитная аппаратура соединяется последовательно, тем самым, обеспечивая разрыв цепи. Лампочки и розетки, всегда включаются параллельно, исключая взаимодействие между собой. Частое использование комбинированного соединения вызвано различным энергопотреблением. Их сопротивления при постоянном напряжении будут отличаться между собой. Комбинированное соединение позволяет распределить нагрузку на линиях и предотвратить перегрузку.
Электрическая цепь, которая изображена графически при помощи знаков и символов, носит название «электрическая схема».
Она представлена в виде идеализированной цепи, которая является расчетной моделью реальной электрической цепи. Иногда она называется эквивалентной схемой замещения. По возможности данная схема должна отражать реальные процессы, что происходят в действительности. Каждый реальный элемент цепи при расчетах заменяется элементами схемы.
В цепях постоянного электрического тока используются два элемента: резистивный элемент с сопротивлением $R$ и источник энергии с внутренним сопротивлением $r_0$. Под внутренним сопротивлением генератора понимается сопротивление всех его внутренних элементов электрическому току.
Сопротивление приемника $R$ может охарактеризовать потребление электрической энергии, иными словами, превращение электроэнергии в другие виды энергии с выделением мощности:
Для того чтобы провести анализ электрической цепи важно выделить несколько понятий: ветвь, узел, контур.
Ветвь – это участок цепи, который образуется элементами, что соединены последовательно, и характеризуется собственными значениями электрического тока в определенный момент.
Узлом является точка соединения нескольких ветвей. Если в месте пересечения на электрической схеме отображается точка, то на этом месте существует электрическое соединение двух линий. В противном случае узла нет.
Контур – это замкнутая часть электрической цепи, которая состоит из нескольких узлов и ветвей.
Заземление любой точки схемы говорит о том, что потенциал данной точки приравнивается нулю.
Активные элементы электрической цепи
В качестве источников энергии в линейных электрических цепях различают источники ЭДС и источники электрического тока. Идеальный источник ЭДС имеет неизменную электродвижущую силу и напряжение на выходных зажимах. У реального источника напряжение и ЭДС изменяются при изменении нагрузки. В электрической схеме это можно учесть последовательным включением резистора $r_0$.
Напряжение $U_ab$ напрямую зависит от тока приемника и приравнивается разности между электродвижущей силой генератора и уменьшением напряжения на его внутреннем сопротивлении $r_0$.
$U_ab = \varphi_a — \varphi_b$
Ток, который протекает по электрической цепи, зависит от сопротивления нагрузки:
Если принять ЭДС источника, где внутреннее сопротивление и сопротивление приемника не зависит от напряжения и тока, то внешняя характеристика источника энергии $U_12 = f(l)$ и вольтамперная характеристика приемника $U_ab = f(l)$ будут линейными.
Для источника электрического тока характерно бесконечное внутреннее сопротивление и бесконечное значение электродвижущей силы. При этом выполняется следующее равенство:
Если $r_0\geqslant R_H$ и $l_0\leqslant l$, то источник энергии находится в режиме, который близок к короткому замыканию. Тогда $l_0=0$/
Определение 1
Источник с внутренним сопротивлением $g_0 = 0$ называется идеальным источником.
Пассивные элементы электрической цепи
Главными пассивными элементами электрических цепей являются индуктивные, резистивные и емкостные. Чтобы понять их силовые характеристики, необходимо рассмотреть их при постоянном токе.
Определение 2
Электротехническое устройство, которое обладает сопротивлением и применяется для ограничения электрического тока, называется резистором.
Резистивными элементами называются идеализированные модели резисторов. Основной величиной, которая характеризует резистор, является сопротивление $R$. Определить его можно из следующего соотношения:
$U_ab = RI$ — закон Ома.
Сопротивление можно измерить в Омах: $[R] = [\frac ] = \frac = Ом$
К пассивным элементам также можно отнести катушку индуктивности L.
Катушка – это обмотка изолированного провода, который намотан на каркас или без каркаса (имеются выводы для присоединения).
$L$ – это параметр, определяющий способность катушки формировать магнитное поле. Он напрямую зависит от геометрических параметров катушки, количества витков, а также от магнитных свойств сердечника, на который наматывается катушка.
Из-за возникновения магнитного поля электрическая цепь пронизывается магнитным потоком. Для того чтобы охарактеризовать катушку индуктивности, как основного элемента цепи, нужно найти потокосцепление $\psi$. Индуктивность $L$ – это коэффициент пропорциональности между $\psi$ и $l$:
Между двумя проводниками, которые разделяются диэлектриком, есть электрическая емкость. Коэффициент пропорциональности С в таком случае называют емкостью:
Электрическая цепь и ее элементы
В электрической цепи должен быть источник движения электрически заряженных частиц, которое и называется электрическим током. Иными словами, электрический ток должен иметь своего возбудителя. Такой возбудитель тока, именуемый источником (генератором), является составным элементом электрической цепи.
Электрический ток может вызывать различные по характеру эффекты — так, он заставляет светиться лампочки накаливания, приводит в действие нагревательные приборы и электродвигатели. Все эти приборы и устройства принято называть приемниками электрического тока. Так как через них протекает ток, т. е. они включены в электрическую цепь, то приемники также являются элементами цепи.
Протекание тока требует, чтобы между источником и приемником существовала связь, которая и реализуется при помощи электрических проводов, представляющих со бой третий важный составной элемент электрической цепи.
Электрическая цепь — совокупность устройств, предназначенных для прохождения электрического тока. Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).
Электрическая цепь — совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.
Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь — совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).
Рис.1. Схема электрической цепи
Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.
Электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока.
Под электрическими цепями постоянного тока в электротехнике подразумевают цепи, в которых ток не меняет своего направления, т. е. полярность источников ЭДС в которых постоянна.
Под электрическими цепями переменного тока имеют ввиду цепи, в которых протекает ток, который изменяется во времени (смотрите, переменный ток).
Источники питания цепи — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. В современной технике в качестве источников энергии применяют главным образом электрические генераторы. Все источники питания имеют внутреннее сопротивление значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.
Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др.
В качестве вспомогательного оборудования в электрическую цепь входят аппараты для включения и отключения (например, рубильники), приборы для измерения электрических величин (например, амперметры и вольтметры), аппараты защиты (например, плавкие предохранители).
Все электроприемники характеризуются электрическими параметрами, среди которых основные — напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение.
Элементы электрической цепи делятся на активные и пассивные. К активным элементам электрической цепи относятся те, в которых индуцируется ЭДС (источники ЭДС, электродвигатели, аккумуляторы в процессе зарядки и т. п.). К пассивным элементам относятся электроприемники и соединительные провода.
Для условного изображения электрических цепей служат электрические схемы. На этих схемах источники, приемники, провода и все другие приборы и элементы электрической цепи обозначаются при помощи выполненных определенным образом условных знаков (графических обозначений).
Согласно ГОСТ 18311-80:
Силовая электрическая цепь — электрическая цепь, содержащая элементы, функциональное назначение которых состоит в производстве или передаче основной части электрической энергии, ее распределении, преобразовании в другой вид энергии или в электрическую энергию с другими значениями параметров.
Вспомогательная цепь электротехнического изделия (устройства) — электрическая цепь различного функционального назначения, не являющаяся силовой электрической цепью электротехнического изделия (устройства).
Электрическая цепь управления — вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в приведении в действие электрооборудования и (или) отдельных электротехнических изделий или устройств или в изменении значений их параметров.
Электрическая цепь сигнализации — вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в приведении в действие сигнальных устройств.
Электрическая цепь измерения — вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в измерении и (или) регистрации значений параметров и (или) получении информации измерений электротехнического изделия (устройства) или электрооборудования.
По топологическим особенностям электрические цепи подразделяют:
- на простые (одноконтурные), двухузловые и сложные (многоконтурные, многоузловые, планарные (плоскостные) и объемные);
- двухполюсные, имеющие два внешних вывода (двухполюсники и многополюсные, содержащие более двух внешних выводов (четырехполюсники, многополюсники).
Источники и приемники (потребители) энергии с точки зрения теории цепей являются двухполюсниками, так как для их работы необходимо и достаточно двух полюсов, через которые они передают либо принимают энергию. Тот или иной двухполюсник называют активным, если он содержит источник, или пассивным — если он не содержит источник (соответственно, левая и правая части схемы).
Устройства, передающие энергию от источников к приемникам, являются четырехполюсниками, так как они должны обладать, по меньшей мере, четырьмя зажимами для передачи энергии от генератора к нагрузке. Простейшим устройством передачи энергии являются провода.
Активный и пассивный двухполюсники в электрической цепи
Обобщенная эквивалентная схема электрической цепи
Элементы электрической цепи, обладающие электрическим сопротивлением и называемые резисторами, характеризуются так называемой вольт-амперной характеристикой — зависимостью напряжения на зажимах элемента от тока в нем или зависимостью тока в элементе от напряжения на его зажимах.
Если сопротивление элемента постоянно при любом значении тока в нем и любом значении приложенного к нему напряжения, то вольт-амперная характеристика прямая линия и такой элемент называется линейным элементом .
В общем случае сопротивление зависит как от тока, так и от напряжения . Одна из причин этого состоит в изменении сопротивления проводника при протекании по нему тока из-за его нагрева. При повышении температуры сопротивление проводника увеличивается. Но так как во многих случаях эта зависимость незначительна, элемент считают линейным.
Электрическая цепь, электрическое сопротивление участков которой не зависит от значений и направлений токов и напряжений в цепи, называется линейной электрической цепью . Такая цепь состоит только из линейных элементов, а ее состояние описывается линейными алгебраическими уравнениями.
Если сопротивление элемента цепи существенно зависит от тока или напряжения, то вольт-амперная характеристика носит нелинейный характер, а такой элемент называется нелинейным элементом .
Электрическая цепь, электрическое сопротивление хотя бы одного из участков которой зависит от значений или от направлений токов и напряжений в этом участке цепи, называется нелинейной электрической цепью. Такая цепь содержит хотя бы один нелинейный элемент.
При описании свойств электрических цепей устанавливается связь между величинами электродвижущей силы (ЭДС), напряжений и токов в цепи с величинами сопротивлений, индуктивностей, емкостей и способом построения цепи.
При анализе электрических схем пользуются следующими топологическими параметрами схем:
- ветвь — участок электрической цепи, вдоль которого протекает один и тот же электрический ток;
- узел — место соединения ветвей электрической цепи. Обычно место, где соединены две ветви, называют не узлом, а соединением (или устранимым узлом), а узел соединяет не менее трех ветвей;
- контур — последовательность ветвей электрической цепи, образующая замкнутый путь, в которой один из узлов одновременно является началом и концом пути, а остальные встречаются только один раз.
Старый учебный диафильм. Одна из 7 частей старого учебного диафильма «Электротехника с основами электроники», выпущенного в 1973 году фабрикой учебно-наглядных пособий:
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Проект «Пассивные элементы электрических цепей и их применение в науке и технике»
Тема моей научной работы «Пассивные элементы электрических цепей и их роль в науке и технике».
Актуальность данной работы обусловлена тем, что систематические упражнения, связанные с применением знаний на практике и выработка экспериментальных умений и навыков, необходимы при изучении физики, а также в различных исследованиях в дальнейшем.
Хорошо известно, что без глубокого усвоения понятий электрического тока, электрических цепей и экспериментальных задач невозможно успешное усвоение темы «Электричество».
Работа эта требует творческого мышления, творческого воображения при поиске путей решения проблемы. В своей работе я изучала пассивные элементы и их практическое применение.
Предлагаемая методика предусматривает проведение опыта с расшифровкой «черного ящика». Как имея шкатулку с четырьмя выводами, содержащую электрическую цепь из трех элементов, среди которых резистор, диод, конденсатор и проводник, определить, какие элементы расположены внутри.
Я взяла эту тему, так как меня интересует физика, а логические задачи, связанные с пассивными элементами электрических цепей показались мне очень интересными.
1. Теоретическая часть.
1.1. Электрические взаимодействия.
Ещё в глубокой древности люди заметили, что янтарь, потёртый о шерсть, приобретает способность притягивать к себе различные тела: соломинки, пушинки, ворсинки меха и т. д.
Так, если потереть стеклянную палочку о лист бумаги, а затем поднести её к мелко нарезанным листочкам бумаги, то они начнут притягиваться к стеклянной палочке.
Наблюдаемые явления в начале XVII в. были названы электрическими. Стали говорить, что тело, получившее после натирания способность притягивать другие тела, наэлектризовано или что ему сообщён электрический заряд.
Наэлектризованные тела или притягиваются друг к другу, или отталкиваются.
Существует только два рода электрических зарядов.
Опыты показывают, что тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.
Электрические заряды взаимодействуют на расстоянии. Причём чем ближе друг к другу находятся наэлектризованные тела, тем взаимодействие между ними сильнее, чем дальше – тем слабее.
В результате длительного изучения электрических явлений установлено, что всякое заряженное тело окружено электрическим полем.
Электрическое поле – это особый вид материи, отличающийся от вещества.
Сила, с которой электрическое поле действует на внесённый в него электрический заряд, называется электрической силой.
Мы уже знаем, что в телах имеются электроны, движением которых объясняются различные электрические явления. Электроны обладают отрицательным электрическим зарядом. Электрическими зарядами могут обладать и более крупные частицы вещества – ионы. Следовательно, в проводниках могут перемещаться различные заряженные частицы.
Электрическим током называется упорядоченное движение заряженных частиц.
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием этого поля заряженные частицы, которые могут свободно перемещаться в этом проводнике, придут в движение в направлении действия на них электрических сил. Возникает электрический ток.
За направление тока условно приняли то направление, по которому движутся в проводнике положительные заряды, т. е. направление от положительного полюса источника тока к отрицательному.
Электрический заряд, проходящий через поперечное сечение проводника в 1 с, определяет силу тока в цепи.
Значит, сила тока равна отношению электрического заряда q , прошедшего через поперечное сечение проводника, ко времени его прохождения t , т. е.
где I – сила тока.
На Международной конференции по мерам и весам в 1948 г. было решено в основу определения единицы силы тока положить явление взаимодействия двух проводников с током.
За единицу силы тока принимают силу тока, при которой отрезки таких параллельных проводников длиной 1 м взаимодействуют с силой 2×10 -7 Н.
Эту единицу силы тока называют ампером ( А ). Так она названа в честь французского учёного Андре Ампера.
Но не только от одной силы тока зависит работа тока. Она зависит ещё и от другой величины, которую называют электрическим напряжением или просто напряжением.
Напряжение – это физическая величина, характеризующая электрическое поле. Оно обозначается буквой U .
Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую, т. е.
За единицу напряжения принимают такое электрическое напряжение на концах проводника, при котором работа по перемещению электрического заряда величиной в 1 Кл по этому проводнику равна 1 Дж.
1 В = 1 Дж/Кл
Опыты показывают, что для данного металлического проводника отношение U / I – есть величина постоянная и значит, она является характеристикой данного проводника.
Эту физическую величину обозначаем:
и называем сопротивлением данного проводника.
За единицу сопротивления принимают 1 ом – сопротивление такого проводника , в котором при напряжении на концах 1 вольт сила тока равна 1 амперу.
1 Ом = 1 В/1 А
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника, т. е.
R = p l / S ,
где p – удельное сопротивление.
Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома по имени немецкого учёного Георга Ома, открывшего этот закон в 1827 г.
Закон Ома читается так: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.
здесь I – сила тока в участке цепи, U – напряжение на этом участке, R – сопротивление участка цепи.
Закон Ома – один из основных физических законов.
Напряжение на концах участка цепи численно равно работе, которая совершается при прохождении по этому участку электрического заряда в 1 Кл. При прохождении по этому же участку электрического заряда, равного не 1 Кл, а, например, 5 Кл, совершённая работа будет в 5 раз больше. Таким образом, чтобы определить работу электрического тока на каком-либо участке цепи, надо напряжение на концах этого участка цепи умножить на электрический заряд, прошедший по нему:
где А – работа, U – напряжение, q –электрический заряд, т. к. I = q / t ,
то: A = UIt .
Мы знаем, что мощность численно равна работе, совершенной в единицу времени. Следовательно, чтобы найти среднюю мощность электрического тока, надо его работу разделить на время:
где P – мощность тока.
Работа электрического тока равна произведению напряжения на силу тока и на время: A = UIt , следовательно,
Электрический ток нагревает проводник. Это явление нам хорошо известно.
Опыты показывают, что в неподвижных металлических проводниках вся работа тока идёт на увеличение их внутренней энергии. Нагретый проводник отдаёт полученную энергию окружающим телам, но уже путём теплопередачи.
Значит, количество теплоты, выделяемое проводником, по которому течёт ток, равно работе тока.
Пользуясь законом Ома, получим:
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.
К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский учёный Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Поэтому сформулированный выше вывод называется законом Джоуля – Ленца.
1.2.Конденсатор.
Большой электроёмкостью обладают системы из двух проводников, называемые конденсаторами. Конденсатор (от лат. condensare — «уплотнять», «сгущать») – представляет собой два проводника, разделённые слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.
Конденсаторы обладают свойством накапливать и удерживать на своих обкладках равные по величине и разные по знаку электрические заряды. Величина электрического заряда каждой из обкладок конденсатора пропорциональна напряжению между обкладками.
Величина, равная отношению заряда одной из обкладок конденсатора к напряжению между ними, называется электрической ёмкостью конденсатора и является одним из его параметров.
Так как в системе СИ единицей заряда служит кулон, а единицей напряжения — вольт, то единица измерения ёмкости равна кулону, делённому на вольт. Она носит название фарада ( Ф )
Обычно пользуются более мелкими единицами – микрофарадой (1 мкФ=10 -6 Ф) или пикофарадо й (1 пФ=10 — 12 Ф).
В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук случайно создали конструкцию-прототип электролитического конденсатора — «лейденскую банку». Первые конденсаторы, состоящие из двух проводников разделенных непроводником, упоминаемые обычно как конденсатор Эпинуса или электрический лист, были созданы ещё раньше.
Свойства конденсатора.
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.
Обозначение конденсаторов на схемах.
— Конденсатор постоянной ёмкости
На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 10 6 пФ) и пикофарадах, но нередко и в нанофарадах.
Характеристики конденсаторов.
Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов.
Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.
При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счёт разделения зарядов, ранее нейтрализовавших друг друга.
Ёмкость батареи последовательно соединённых конденсаторов всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.
Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.
Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.
Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального.
Классификация конденсаторов.
Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе.
По виду диэлектрика различают:
- Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
- Конденсаторы с газообразным диэлектриком.
- Конденсаторы с жидким диэлектриком.
- Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
- Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
- Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
- Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
- Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных емкостей, сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
Также различают конденсаторы по форме обкладок:
Плоские, цилиндрические, сферические и другие.
Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока.
Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.
История создания и развития диодов.
Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году британский учёный Фредерик Гутри открыл принцип действия термионных (вакуумных ламповых с прямым накалом) диодов, в 1874 году германский учёный Карл Фердинанд Браун открыл принцип действия кристаллических (твёрдотельных) диодов.
Принципы работы термионного диода были заново открыты 13 февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы. Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году германский учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле. ДжэдишЧандраБоус развил далее открытие Брауна в устройство применимое для детектирования радио. Около 1900 года ГринлифПикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона) 16 ноября 1904 года. 20 ноября 1906 года Пикард запатентовал кремниевый кристаллический детектор.
В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Иклс ввёл в оборот слово «диод», образованное от греческих корней «di» — два, и «odos» — путь.
Типы диодов.
Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.
- Полупроводниковые диоды
Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом.
Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается нитью накала. Благодаря этому, часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если же поле направлено в противоположную сторону, электрическое поле препятствует этим электронам и тока (практически) нет.
Применяются для коммутации высокочастотных сигналов. Управление осуществляется постоянным током, разделение ВЧ и управляющего сигнала с помощью конденсаторов и индуктивностей.
Интересные факты.
- Диоды могут использоваться как датчики температуры.
- Диоды в прозрачном стеклянном корпусе могут обладать паразитной чувствительностью к свету (то есть радиоэлектронное устройство работает по-разному в корпусе и без корпуса, на свету).
1.4. Резистор.
Резистор (англ. resistor, от лат. resisto — сопротивляюсь), — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома для участка цепи: мгновенное значение напряжения на резисторе пропорционально току, проходящему через него.
На практике же резисторы в той или иной степени обладают также паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.
Обозначение резисторов на схемах.
— Резистор
- Последовательное соединение резисторов
При последовательном соединении резисторов их сопротивления складываются.
При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.
- Параллельное соединение резисторов
При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора).
Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок эквивалентным сопротивлением, таким образом, находится общеесопротивление.
При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.
Классификация резисторов.
Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду Вольт-Амперная Характеристика (ВАХ), по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления.
- резисторы общего назначения
- резисторы специального назначения
По способу защиты:
- изолированные
- неизолированные
- вакуумные
- герметизированные
По способу монтажа:
- для печатного
- для навестного
- для микросхем и микромодулей
По виду вольт-амперной характеристики:
- линейные резисторы
- нелинейные резисторы
- варисторы — сопротивление зависит от приложенного напряжения
- терморезисторы — сопротивление зависит от температуры
- фоторезисторы — сопротивление зависит от освещённости
- тензорезисторы — сопротивление зависит от деформации резистора
- магниторезисторы — сопротивление зависит от величины магнитного поля
По характеру изменения сопротивления:
- постоянные резисторы
- переменные регулировочные резисторы
- переменные подстроечные резисторы
По технологии изготовления:
- Проволочные резисторы. Представляют собой кусок проволоки с высоким удельным сопротивлением, намотанный на какой-либо каркас. Могут иметь значительную паразитную индуктивность. Высокоомные малогабаритные проволочные резисторы иногда изготавливают из микропровода.
- Плёночные металлические резисторы. Представляют собой тонкую плёнку металла с высоким удельным сопротивлением, напылённую на керамический сердечник, на концы сердечника надеты металлические колпачки с проволочными выводами. Иногда, для повышения сопротивления, в плёнке прорезается винтовая канавка. Это наиболее распространённый тип резисторов.
- Металлофольговые резисторы. В качестве резистивного материала используется тонкая металлическая лента.
- Угольные резисторы. Бывают плёночными и объёмными. Используют высокое удельное сопротивление графита.
- Интегральный резистор. Используется сопротивление слаболегированного полупроводника. Эти резисторы могут иметь большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных микросхем, где применить другие типы резисторов невозможно или не технологично.
1.5. Роль пассивных элементов электрических цепей в науке и технике.
Применение конденсаторов.
Конденсаторы находят применение практически во всех областях электротехники.
- В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.
- Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов.
- В схемах Релейной Защиты и Автоматики (РЗиА) конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы Автоматического Повторного Включения (АПВ) использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
- В качестве аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Так же существуют некоторые модели трамваев, в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.
Конденсаторы в радиотехнике.
Конденсатор — один из самых широко используемых компонентов радиоустройств. Обкладки имеют внешние выводы, с помощью которых конденсатор соединяется с другими элементами. Одним из важных свойств конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты.
- Конденсаторы (совместно с катушками индуктивности и резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
- Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
- В качестве измерителя уровня жидкости. Непроводящая жидкость, заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня фазосдвигающего конденсатора.
- Фазосдвигающий конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Так же он может применяться для пуска и работы трехфазных асинхронных двигателей при питании от однофазного напряжения.
- При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях, импульсных лазерах с оптической накачкой, (ГИН; ГИТ) и т. п.
Конденсаторы в медицине.
В настоящее время практически все передовые достижения научно-технической революции поставлены на службу здравоохранения и медицины. Значительное число ведущих научно-исследовательских и промышленных организаций занято сейчас разработкой и производством медицинской техники.
Электроны (или электричество), накопленные в конденсаторе, аналогичны воздуху, хранящемуся в баллоне под давлением, или воде, запасенной в баке. Они могут быть истрачены или разряжены. Заряженный конденсатор также может быть разряжен, если будет создан проводящий путь для перемещения электронов с пластины, где они в избытке, на пластину, где дефицит их. Способность конденсатора заряжаться и разряжаться широко используется в электрической и в медицинской аппаратуре. Этот принцип продемонстрирован на примере дефибриллятора постоянного напряжения.
Ключ разомкнут. К торсу пациента соответствующим образом приложены пластины или электроды (металлические контактные пластинки с изолированными ручками), которые вместе с торсом пациента и проводами образуют замкнутую проводящую цепь. При замыкании переключателя через пациента проходит ток. Электрическая энергия быстро передается от дефибриллятора к пациенту и осуществляется терапевтическое воздействие.
Применяется для того, чтобы запустить остановившееся сердце.
Медицинские лазеры применяются для коррекции зрения.
Прямое вмешательство в ткани глаза часто становилось причиной операционных травм и последующих осложнений. Революционная идея была предложена Хосе Барракуером, колумбийским офтальмологом в 1949 году и суть ее состояла в коррекции зрения с помощью луча лазера.
Ведущие офтальмологи мира сразу признали новую, передовую технологию благодаря ее преимуществам. С 1988 года лазерная коррекция входит в практику всех самых известных офтальмологических центров Европы и Америки. В России этими проблемами занимался в своей клинике Светослав Федоров.
Все музыкальные синтезаторы имеют в своем составе генераторы звуковых частот, в которых обязательно применяются конденсаторы.
Применение диодов.
Диодные выпрямители.
Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост— основной компонент блоков питания практически всех электронных устройств.Диодный трёхфазный выпрямитель по схеме Ларионова А. Н. на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.
Диодные детекторы.
Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются в радиоприёмных устройствах: радиоприёмниках, телевизорах и т.п.
Диодная защита.
Диоды применяются также для защиты разных устройств от неправильной полярности включения.
Известна схема диодной защиты схем постоянного тока с индуктивностями от скачков при выключении питания. Диод включается параллельно катушке так, что в «рабочем» состоянии диод закрыт. В таком случае, если резко выключить устройство, возникнет ток через диод, и сила тока будет уменьшаться медленно (ЭДС индукции будет равна падению напряжения на диоде), и не возникнет мощного скачка напряжения, приводящего к искрящим контактам и выгорающим полупроводникам.
Диоды в управляющих цепях.
Диоды широко используются в управляющих электрических цепях в радиотехнике.
Применение резисторов.
Любой проводник без сопротивления, на самом деле, тоже имеет какие-то сотые доли Ома, то есть тоже является проводником с малым сопротивлением.
Применение резисторов очень широко. Ни одна схема, ни один прибор не обходится без них. Они устанавливаются в вычислительной технике, компьютерах, в радиоприемной и радиопередающей технике.
Существуют устройства, где сопротивление вредно, на которых мы стремимся сделать сопротивления близкими к нулю. Например, при передаче электроэнергии с электростанции на большие расстояния мы теряем огромное количество энергии. Мы стремимся сделать эти потери минимальными, и стараемся при этом сохранить вырабатываемую на электростанции мощность. Для этого все электрические сети переводят на миллионы вольт напряжения. Мощность равна I × U , и чтобы сохранить передаваемую мощность можно либо увеличить напряжение, либо увеличить силу тока. Но потери при передаче энергии определяются выделением теплоты, то есть равны величине I 2 × R × t и зависят поневоле от сопротивления тысяч километров проводов, и для их уменьшения нужно уменьшать ток, и увеличивать напряжение.
Рассмотрим огромный класс электродвигателей, включая трехфазные и двухфазные электродвигатели двигатели, В них электрический ток течет по реальным проводам, и часть энергии превращается в тепло, а в результате мотор греется и энергия теряется. Для того, чтобы КПД мотора, который равен отношению мощности на валу к полной потребляемой мощности, был как можно больше, общее сопротивление должно стремиться к нулю. Например, трехфазные двигатели, в которых ток не течет через ротор, а только через обмотки, создающие вращающееся магнитное поле, имеют, как известно, КПД до 98%.
Существуют устройства, где сопротивление полезно. Это различные нагревательные приборы: электрические печи на производстве и в быту.