Как из водорода получить метан
Перейти к содержимому

Как из водорода получить метан

  • автор:

Установки производства водорода методом пиролиза метана

Разработанная НПК «Грасис» технология получения водорода путем термического пиролиза метана и нефтешламов в ванне расплавленного чугуна позволяет вырабатывать из природного газа водород без выделения углекислого газа.

Пиролиз метана позволяет производить водород экологически безопасным способом, поскольку углерод выделяется в твердой биологически нейтральной форме и может быть использован в производстве. Полученный данным способом водород классифицируют как «бирюзовый водород».

Установки производства водорода методом пиролиза метана

  • Главная
  • Продукция
  • Установки производства и очистки водорода
  • Установки производства водорода методом пиролиза метана

по требованию Заказчика

Без выбросов CO2

Экологически чистое производство водорода на основе технологии пиролиза метана в расплавленном чугуне

Экспертное интервью Ген. директора «Грасис» Потехина С.В.

Основными промышленными способами получения водорода сегодня являются газификация угля и паровой риформинг углеводородов. Технологии не являются экологичными, но получили свое распространение из-за экономической целесообразности. Производство «Зеленого» водорода методом электролиза не способно конкурировать с традиционными методами из-за высокой стоимости.

Технология пиролиза метана позволяет получать безуглеродный водород для промышленного применения с затратами, сопоставимыми с традиционными методами.

Схема работы установки

Тех. характеристики

Производительность, м³/ч до 100 000

Чистота водорода,% до 99,999

Давление, МПа по требованию Заказчика

Экологичность Без выбросов CO2

Производство водорода на объекте для:

  • Нефтепереработки и нефтехимии;
  • Автомобильного топлива;
  • Выработки энергии;
  • Трудно декарбонизируемых промышленных процессов, таких как производство NH3 и цемента;
  • Производства металлов.

Побочный продукт пиролиза – твердый черный элементарный углерод (графит) – может использоваться в качестве промышленного сырья для производства стали, аккумуляторов, углеродных волокон, а также разных структур и материалов на основе углерода.

Компетенций НПК «Грасис» в полной мере достаточно для разработки и изготовления оборудования установок производства водорода методом пиролиза метана.

Компетенции НПК «Грасис» позволяют осуществлять комплексную реализацию проекта, включая этапы: разработка ТЗ, технологическое моделирование (включая термодинамику, кинетику, газодинамику, тепло- и массообмен и т.д.), решение материаловедческих вопросов, разработка базовых проектов установок, детальный инжиниринг установок (включая конструирование нестандартного, нетипового, несерийного оборудования), изготовление и сопровождение изготовления (в части оборудования, не относящегося к производственным возможностям НПК «Грасис») нестандартного технологического оборудования, комплектация, логистика, ШМР, ПНР, ввод в эксплуатацию.

  • Экологически чистое производство водорода (без выделения углекислого газа в атмосферу).
  • Побочный продукт – промышленный углерод высокого качества.
  • Отрицательная углеродоемкость при использовании биогаза в качестве источника углеводородов.
  • Одноэтапный процесс.
  • Модульная система для простоты развертывания.

Метан: способы получения и свойства

Метан CH4 – это предельный углеводород, содержащий один атом углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, легче воды, нерастворим в воде и не смешивается с ней.

Гомологический ряд метана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4, или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
Метан CH4
Этан C2H6
Пропан C3H8
Бутан C4H10
Пентан C5H12
Гексан C6H14
Гептан C7H16
Октан C8H18
Нонан C9H20
Декан C10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение метана

В молекуле метана встречаются связи C–H. Связь C–H ковалентная слабополярная. Это одинарная σ-связь. Атом углерода в метане образует четыре σ-связи. Следовательно, гибридизация атома углерода в молекуле метана– sp 3 :

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению молекулы.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода

Изомерия метана

Для метана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства метана

Метан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для метана характерны реакции:

  • разложения,
  • замещения,
  • окисления.

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для метана характерны только радикальные реакции.

Метан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

Для метана характерны реакции радикального замещение.

1.1. Галогенирование

Метан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

Бромирование протекает более медленно.

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

1.2. Нитрование метана

Метан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в метане замещается на нитрогруппу NO2.

2. Реакции разложения метана (д егидрирование, пиролиз)

При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:

Пиролиз метана – промышленный способ получения ацетилена.

3. Окисление метана

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление

  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Продукт реакции – так называемый «синтез-газ».

Получение метана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета. Реакция больше подходит для получения симметричных алканов. Получить таким образом метан нельзя.

2. Водный или кислотный гидролиз карбида алюминия

Этот способ получения используется в лаборатории для получения метана.

3. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии ацетата натрия с гидроксидом натрия при сплавлении образуется метан и карбонат натрия:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Синтезом Фишера-Тропша можно получить метан:

5. Получение метана в промышленности

В промышленности метан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Как ученый из Черноголовки научил метан и водород не взрываться

фото Семена Каца для Forbes

Раз в месяц корпус одного из научно-исследовательских институтов на окраине Черноголовки трясет от взрывов. Никто не пугается.

Сотрудники института знают, что это член-корреспондент РАН профессор Вилен Азатян проводит опыты в своей лаборатории — в просторной комнате с железобетонным куполом по центру 84-летний ученый доказывает эффективность своих разработок по предотвращению взрывов метана и водорода.

Сфера применения, по словам Азатяна, обширна — шахты, атомные электростанции, дирижаблестроение, двигатели для автомобилей и самолетов. Первые положительные результаты ученый получил еще в 1980-е годы, но до сих пор примеров практического использования его метода предотвращения взрывов крайне мало. Как профессор добивается внедрения своих разработок и кто ему в этом помогает?

Свое учение

Москва, 1977 год. Молодой ученый Вилен Азатян с папкой бумаг вошел в кабинет своего научного руководителя, нобелевского лауреата Николая Семенова. Разговор предстоял непростой — Азатян указывал учителю на недочеты его теории.

Семенов, изучавший процесс взрывов и горения, считал, что при нормальном давлении резкое выделение тепла становится причиной горения. Опыты Азатяна показывали, что тепловыделение — лишь результат цепной лавины (лавино-образное размножение атомов и радикалов в цепной реакции, которое определяет процесс горения). К тому же раньше считалось, что цепная реакция важна только при пониженном давлении. А по его данным выходило, что и при атмосферном, и при высоком. «Мои результаты он тогда изучил и сказал, что, возможно, я прав. Но посоветовал не спешить и заявить об открытии, когда докажу свою правоту в независимых лабораториях», — вспоминает Азатян.

На доказательство теории у него ушло больше 20 лет. Опыты проводились в шести институтах, включая Институт имени Макса Планка в Германии, гипотеза подтвердилась.

Но Семенов до триумфа своего ученика не дожил, он умер в 1986 году в возрасте 90 лет.

Подтверждение гипотезы Азатяна открыло возможности управлять взрывами и процессом горения. Взрывы происходят из-за того, что осколки молекул начинают стремительно взаимодействовать друг с другом и происходит цепная реакция. Согласно Азатяну, взрыва не будет, если нейтрализовать эти осколки с помощью специально подобранного для каждого газа вещества, ингибитора.

В качестве ингибитора (присадки) для метана Азатян сначала использовал хлороформ. «Им раньше делали наркоз, в небольших дозах он почти безвреден», — говорит Азатян. Однако в Ростехнадзоре посчитали газ вредным и метод забраковали. В итоге Азатян остановился на комбинированном ингибиторе на основе фреона. Всеми необходимыми согласованиями ему пришлось заниматься самостоятельно. «А кому же еще?» — досадует ученый.

Поддержка с воздуха

Дирижабль с туристами на борту бесшумно взмывает в воздух, облетает окрестности и приземляется в поле. «Когда летишь, полная тишина вокруг. У кабины окна в пол, и все видно в мельчайших деталях», — делится впечатлениями от полета на дирижабле в Германии владелец и президент строительной группы компаний «Конти» Тимур Тимербулатов. После той поездки он мечтает наладить в России подобный туризм и совершить кругосветное путешествие. Любовь к дирижаблям и привела к знакомству с Азатяном в 2005 году.

Современные дирижабли летают на гелии, а не на водороде, как в начале XX века. Гелий — дорогой газ, его запасы невосполнимы. Отказаться от водорода пришлось после нескольких крупных трагедий вроде крушения «Гинденбурга» в 1937 году, когда погибли десятки людей: газ взрывается от малейшей искры. С ингибитором, как уверяет Азатян, такой проблемы можно избежать. Состав ингибитора для водорода он пока не раскрывает, ждет выхода научной статьи. «Мы всегда исходили из того, что ингибитор должен быть безвредным, доступным и дешевым», — говорит ученый.

Тимербулатов познакомил Азатяна с руководством московской компании «Авгуръ», которая занимается строительством дирижаблей. На ее базе проводят сейчас испытания нового метода заправки летательных средств.

Специально для этого создана фирма «Беркут», в которой 51% достался «Авгуру», 30% — Тимербулатову, около 20% — Азатяну. «Перед ним стояла задача доказать, что в дирижаблях можно безопасно использовать водород. И его команда с этим справилась», — говорит Георгий Юзбашьянц, гендиректор ОКБ «Атлант», «дочки» «Авгура», которая занимается разработкой дирижаблей грузоподъемностью до 200 т.

С помощью летательных аппаратов компания надеется решить проблему доступности удаленных российских территорий.

Первые этапы разработки финансируются за счет грантов фонда «Сколково».

Несмотря на удачные испытания, до практического применения водорода в дирижаблях дело пока не дошло — например, нужно еще поработать над способом заправки.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

© Абрамов В. А. 2017-2024
Таблица растворимости и ряд активности металлов

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH — Р Р Р Р Р М Н М Н Н Н Н Н Н Н Н Н Н Н
F — Р М Р Р Р М Н Н М М Н Н Н Р Р Р Р Р Н Р Р
Cl — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н Р М Р Р
Br — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н М М Р Р
I — Р Р Р Р Р Р Р Р Р Р ? Р ? Р Р Р Р Н Н Н М ?
S 2- М Р Р Р Р Н Н Н Н Н Н Н Н Н Н Н
HS — Р Р Р Р Р Р Р Р Р ? ? ? ? ? Н ? ? ? ? ? ? ?
SO3 2- Р Р Р Р Р Н Н М Н ? Н ? Н Н ? М М Н ? ?
HSO3 Р ? Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? ? ? ?
SO4 2- Р Р Р Р Р Н М Р Н Р Р Р Р Р Р Р Р М Н Р Р
HSO4 Р Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? Н ? ?
NO3 Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
NO2 Р Р Р Р Р Р Р Р Р ? ? ? ? Р М ? ? М ? ? ? ?
PO4 3- Р Н Р Р Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н
CO3 2- Р Р Р Р Р Н Н Н Н ? ? Н ? Н Н Н Н Н ? Н ? Н
CH3COO — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
SiO3 2- Н Н Р Р ? Н Н Н Н ? ? Н ? ? ? Н Н ? ? Н ? ?

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Сообщение об ошибке

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

Профиль участника
Правила записи ответа в задачах на продолжение реакции

1. В ответе перечисляем через знак «+» только продукты реакции с коэффициентами. Левую часть реакции писать не нужно. Например:

10 уксусная кислота + 4 K2SO4 + 8 MnSO4 + 12 вода

2. Ответ должен учитывать только те реагенты, которые указаны в задаче, нельзя «брать» дополнительные реагенты. Например, если уравнение в задаче «CH3CHO + KMnO4», требуется дописать уравнение окисления именно в нейтральной среде, а не в кислой. Если без дополнительного реагента реакция не идет, пишем в ответ «не идет».

Исключение: если в задаче один из реагентов дан в растворе (индекс «p-р»), в уравнении реакции может дополнительно участвовать вода.

3. Ответ должен учитывать условия реакции и формы реагента, если они есть. Если при данных условиях реакция не идет, в ответ пишем «не идет».

4. Если у реагентов нет коэффициентов, вы должны сами выбрать, в каком молярном соотношении могут вступить друг с другом эти реагенты в данных условиях, и в соответствии с этим уравнять реакцию. Например, в задаче «C6H5OH + Cl2» допустимо как моно-хлорпроизводное, так и конечный продукт. Если один из реагентов имеет коэффициент, его необходимо учесть, задача «C6H5OH + 1Cl2» означает, что требуется именно моно-хлорпроизводное. Если в уравнении коэффициент одного из реагентов указан, а у другого реагента нет — значит у него подразумевается коэффициент 1.

5. Вещества можно записывать систематическими или тривиальными названиями, а также формулой. Но название должно быть однозначным, например, ответ «хлорид железа» не будет засчитан, т.к. неясно, это FeCl2 или FeCl3. Метилгексан тоже не будет засчитан, т.к. неоднозначен локант, а вот метилбутан — ок.

6. Если реакция дает нестехиометрическую смесь продуктов, в ответе следует писать преобладающий продукт. Если при данных условиях преобладающий продукт неоднозначен (или это выходит за рамки школы) система примет любой допустимый вариант ответа.

7. Коэффициенты и знаки «+» можно отделять пробелами или не отделять, как вам удобнее. Но если название содержит радикал, стоит отделять коэффициент пробелом, чтобы система не спутала коэффициент с локантом и забытым дефисом.

8. Коэффициенты в уравнении должны быть сокращены, но сокращать нужно лишь на общий множитель во всем уравнении. Нельзя сокращать общий множитель коэффициентов в правой части уравнения, если левая при этом окажется дробной. Коэффициент 1 писать не надо.

9. Порядок перечисления продуктов на ваше усмотрение.

10. Во время решения задачи можно пользоваться только химическими таблицами, справочником и графическим редактором. Если во время решения задачи вы сделаете запрос на любое вещество или реакцию, а потом отправите ответ, ваш рейтинг участника не будет повышен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *