2.3. Эдс и напряжение в электрической цепи
Источник электрической энергии осуществляет направленное перемещение электрических зарядов по всей замкнутой цепи (рис. 1.3.).
Энергия W, которую затрачивает или может затратить источник на перемещение единицы положительного заряда по всей замкнутой цепи, характеризует электродвижущую силу источника Е (ЭДС):
Из определения следует, что ЭДС является энергетической характеристикой источника тока, а не силовой, как можно было бы решить по названию «электродвижущая сила». Единицей измерения ЭДС является вольт:
Энергия, затраченная на перемещение единицы положительного заряда на каком-либо участке замкнутой цепи, характеризует напряжение или падение напряжения на этом участке (внутреннем или внешнем):
Для замкнутой электрической цепи условие равновесия напряжений
Таким образом, ЭДС источника (Е) можно рассматривать как сумму падений напряжения на внутреннем (U0) и на внешнем (U) участках замкнутой цепи (рис. 2.3).
4. Закон Ома для участка цепи
Закон Ома для участка электрической цепи устанавливает зависимость между током, напряжением и сопротивлением на этом участке цепи.
Направленное перемещение электрических зарядов в проводнике (т. е. электрический ток I) происходит под действием сил однородного электрического поля (рис. 2.4). Напряженность поля определяется из выражения
где — напряжение на участке проводника длиной l. Плотность тока в проводнике пропорциональна напряженности однородного электрического поля, силы которого направленно перемещают в нем заряды:
где γ — коэффициент пропорциональности, называемый удельной проводимостью, характеризующий способность проводника проводить электрический ток.
Подставив в выражение (2.4) величину напряженности однородного электрического поля, силы которого перемещают заряды в проводнике, получим
где — электрическое сопротивление участка проводника (RAB) длинной l,
Это и есть математическое выражение закона Ома для участка АВ электрической цепи.
Таким образом, ток на участке электрической цепи пропорционален напряжению на этом участке и обратно пропорционален сопротивлению этого участка.
Закон Ома для участка цепи позволяет определить напряжение данном участке
а также вычислить сопротивление участка электрической цепи
Выражения (1.6) и (1.7) являются арифметическими следствиями закона Ома, которые широко применяются для расчета электрических цепей.
Электродвижущая сила
В физике такое понятие, как электродвижущая сила (сокращенно – ЭДС) используется в качестве основной энергетической характеристики источников тока.
Электродвижущая сила ( ЭДС )
Электродвижущая сила (ЭДС) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов.
ЭДС – измеряется в Вольтах
Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения.
URH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи.
Е – ЭДС – измеряется на заводе изготовителе.
Электродвижущая сила (ЭДС) представляет собой физическую величину, которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду.
Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока.
Химическая электродвижущая сила
Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.
Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.
В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер.
Электромагнитная электродвижущая сила
Электромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п.
Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС. Если цепь замкнута, то в ней возникает электрический ток.
В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу, которая при этом индуктируется, именуют ЭДС индукции.
Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля.
Фотоэлектрическая электродвижущая сила
Эта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект.
В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте.
Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические. Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований. В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения.
Электростатическая движущая сила
Что касается этого типа электродвижущей силы, то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках.
Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт).
Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие.
Пьезоэлектрическая электродвижущая сила
Эта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех.
Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества.
Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления.
Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов.
Термоионная электродвижущая сила
Эта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп.
Термоэлектрическая электродвижущая сила
Эта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно.
Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины. Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов. Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС, которая по своей величине пропорциональна изменению температуры.
Какой характеристикой источника является ЭДС источника?
Какой характеристикой источника является ЭДС
источника?
1 Силовой 2 Энергетической
и почему??
Голосование за лучший ответ
Похожие вопросы
Ваш браузер устарел
Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.
ЭДС (электродвижущая сила) для начинающих физиков: что это такое?
Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить Николу Тесла с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике.
Определение ЭДС в физике
ЭДС – электродвижущая сила. Обозначается буквой E или маленькой греческой буквой эпсилон.
Электродвижущая сила — скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения), действующих в электрических цепях переменного и постоянного тока.
ЭДС, как и напряжение, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.
Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.
Объясняем суть ЭДС «на пальцах»
Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.
Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно, чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.
То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.
Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.
Природа ЭДС
Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:
- Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
- Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
- ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
- Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
- Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.
Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС – сила неэлектрического происхождения, которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи. И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!
Мы поможем сдать на отлично и без пересдач
- Контрольная работа от 1 дня / от 120 р. Узнать стоимость
- Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
- Курсовая работа от 5 дней / от 2160 р. Узнать стоимость
- Реферат от 1 дня / от 840 р. Узнать стоимость
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.