С какой скоростью вдоль проводника распространяется электрическое поле
Перейти к содержимому

С какой скоростью вдоль проводника распространяется электрическое поле

  • автор:

Скорость движения электронов

В проводах скорость движения электронов под действием поля в промежутках времени между двумя столкновениями может быть сравнительно значительной, достигая нескольких километров в секунду. Но бесчисленные столкновения приводят к тому, что фактическое перемещение электронов в направлении действия поля характеризуется чрезвыйчано малой скоростью. Эта скорость в конечном счете определяется напряженностью поля и в среднем при напряженности поля 1 вольт на сантиметр длины провода составляет около десяти сантиметров в секунду.

Но подобная напряженность поля встречается редко. Чтобы создать такое поле в проводе длиной 1 км, надо подвести к нему напряжение 100 000 вольт. Фактически имеющие место напряженности поля бывают значительно меньше, и скорость движения электронов в направлении действия такого поля измеряется небольшим количеством миллиметров или даже долями миллиметра в секунду. Например, при таких напряжениях, какие действуют в осветительной сети, скорость движения электронов составляет 1—3 мм в секунду. В час электроны передвигаются на расстояние всего лишь около 10 м.

Итак, скорость электрического тока — это скорость распространения электрического поля, побуждающего электроны двигаться вдоль провода, а не скорость самих электронов.

Если бы ток распространялся со скоростью электронов, то телеграмма, посланная из Москвы во Владивосток, могла бы прийти туда, например, через 100 лет. Ее получили бы правнуки адресата. При такой скорости Москве пришлось бы ждать 10 лет, пока до нее дойдет ток от Куйбышевской ГЭС, и даже лампочку, простую электрическую лампочку, нам пришлось бы включать за полчаса до того, как нам потребуется ее свет, так как при скорости 10 м. в час электроны добрались бы от выключателя до лампы не раньше чем через полчаса.

Во всех предыдущих примерах мы считали, что имеем дело с постоянным током, который характеризуется движением электронов в одну сторону. При переменном токе электроны совер’шают лишь колебательные движения около среднего положения и вообще не перемещаются на большие расстояния.

Скорость движения электронов в вакууме гораздо больше, чем в проводах.

Это вполне естественно, так как, двигаясь в почти полной пустоте, электроны не испытывают столкновений с другими частицами. Поэтому скорость их движения определяется только ускоряющим действием поля и фактически значительно превышает тепловые скорости. В электронных лампах при анодном напряжении 250 вольт электроны пролетают пространство между катодом и анодом со скоростью около 9 ООО км в секунду. Еще значительно быстрее мчатся электроны в телевизионных трубках, где они разгоняются напряжением во много тысяч йольт.

Скорость электронов в проводнике

Скорость электронов в проводнике

Направление теплового движения электронов в проводниках хаотично.

В каждый данный момент времени известное количество электронов имеет такое направление движения, которое должно привести к вылету их за пределы проводника. Однако преодоление поверхностного слоя проводника представляет для электронов серьезное затруднение, так как он отталкивает их внутрь проводника (см. стр. 114). Чтобы прорваться наружу, электроны должны приобрести большую скорость. Например, для того чтобы вылететь из вольфрама — металла, из которого делаются нити накала радиоламп, электроны должны приобрести скорость 1 270 км в секунду.

Такую скорость электроны могут приобрести только в результате сильного нагревания проводника. Когда нужная скорость достигнута, начинается вылет электронов из проводника во внешнее пространство — электронная эмиссия. Проводник из вольфрама для получения нормальной электронной эмиссии должен быть нагрет примерно до 2 500°С.

Таким образом, скорость движения электронов в радиоаппаратуре колеблется в пределах примерно от долей миллиметра до десятков тысяч километров в секунду.

Понятие электрического тока обычно связывается с движением электронов. Мы представляем себе электрический ток как поток бесчисленного количества электронов, несущихся по проводам или через пустоту электронной лампы.

Но электрический ток — это не обязательно поток электронов. Электрический ток есть движение электрических зарядов, а зарядом обладают не только электроны. Да и сам характер движения зарядов может быть различным, в том числе таким, для какого определение «поток» не всегда оказывается подходящим.

Дрейфовая скорость — это средняя скорость движения частиц, например, электронов, приобретаемая в результате воздействия электрического поля.

В общем случае, электрон беспорядочно движется в проводнике со скоростью Ферми. Приложение к проводнику электрического поля вызывает небольшой дрейф беспорядочно движущихся электронов в определённом направлении.

Чему равна скорость электрического тока в проводнике

С какой скоростью передается по проводу электрический ток? На этот вопрос не так просто ответить. Распространяется ток с чрезвычайно большой скоростью — с такой же, как и свет, т. е. 300 тыс. км в секунду. От Луны до Земли (385 тыс. км) свет доходит примерно за секунду с четвертью, от Солнца до Земли (около 150 млн. км) — за 8 мин. 18 сек.

Значит, если бы протянуть провод от Земли до Луны и включить ток на Земле, то он дошел бы до Луны через секунду с четвертью. Лампочка, включенная в этот провод, через секунду зажглась бы на расстоянии 300 тыс. км от нас.

На наших «земных» расстояниях ток распространяется практически мгновенно. Однако это вовсе не значит, что с такой скоростью движутся по проводу сами электроны. Их скорость несравненно меньше.

Давайте проведем такой мысленный эксперимент. Представьте, что на расстоянии в 100 километров от города находится некая деревня, и что из города в эту деревню проложена проводная сигнальная линия длиной примерно в 100 километров с лампочкой на конце.

Линия экранированная двухпроводная, она проложена на опорах вдоль автомобильной дороги. И если теперь послать сигнал по этой линии из города в деревню, то через какое время он сможет быть там принят?

Скорость электрического тока

Расчеты и опыт говорят нам, что сигнал в виде засветившейся лампочки появится на другом конце минимум через 100/300000 секунд, то есть минимум через 333,3 мкс (без учета индуктивности провода) в деревне загорится лампочка, значит в проводнике установится ток (допустим, мы используем постоянный ток от заряженного конденсатора).

100 — это длина каждой из жил нашего провода в километрах, а 300000 километров в секунду — скорость света — скорость распространения электромагнитной волны в вакууме. Да, «движение электронов» распространится по проводнику со скоростью света.

Но тот факт, что электроны начинают приходить в движение друг за другом со скоростью света вовсе не означает, что сами электроны движутся в проводнике со столь огромной скоростью. Электроны или ионы, в металлическом проводнике, в электролите или в другой проводящей среде, не могут двигаться так быстро, то есть носители заряда не движутся друг относительно друга со скоростью света.

Скорость света в данном случае — это та скорость, с которой носители заряда в проводнике начинают друг за другом приходить в движение, то есть это скорость распространения поступательного движения носителей заряда. Сами же носители заряда имеют «дрейфовую скорость» при установившемся токе, скажем в медном проводнике, всего несколько миллиметров в секунду!

Поясним этот момент. Допустим, у нас есть заряженный конденсатор, и мы присоединяем к нему длинные провода от нашей лампочки, установленной в деревне на расстоянии в 100 километров от конденсатора. Присоединение проводов, то есть замыкание цепи осуществляем выключателем вручную.

Что произойдет? При замыкании выключателя начинается движение заряженных частиц в тех частях проводов, которые присоединены к конденсатору. Электроны покидают минусовую обкладку конденсатора, электрическое поле в диэлектрике конденсатора уменьшается, положительный заряд противоположной (плюсовой) обкладки уменьшается — на нее забегают электроны из присоединенного провода.

Так разность потенциалов между обкладками уменьшается. А так как электроны в прилегающих к конденсатору проводах начали двигаться, то на их места приходят другие электроны из отдаленных мест провода, иначе говоря начинается процесс перераспределения электронов в проводе из-за действия электрического поля в замкнутой цепи. Этот процесс распространяется все дальше и дальше по проводу и наконец достигает нити накаливания сигнальной лампы.

Итак, изменение электрического поля распространяется по проводнику со скоростью света, активируя электроны в цепи. Но сами электроны движутся гораздо медленнее.

С огромной скоростью распространяется вдоль провода электрическое силовое поле — действие электродвижущей силы. Через секунду она приведет в движение электроны на расстоянии 300 тыс. км. Но это будут отнюдь не те электроны, которые на секунду раньше пришли в движение в начале провода.

Когда электроны проходят внутри металлического провода, они все время сталкиваются с атомами и один с другим, отскакивают в стороны, движутся то в одном, то в другом направлении, часто даже назад. И это очень замедляет их движение. Правда, если приложить электродвижущую силу, она постепенно «проталкивает» электроны вдоль провода.

Если бы скорость тока была скоростью распространения электронов, то лампочки в светильнике зажглись бы через полчаса после того, как вы повернули на стене выключатель. И то это было бы лишь в том случае, если бы мы применяли постоянный ток.

Но в технике чаще используется переменный ток, который 100 раз в секунду меняет свое направление (имеет 50 пер/сек). В таком токе электроны вообще не распространяются вдоль провода. За каждый период они совершают лишь колебательное движение вперед и назад от своего среднего положения в проводе.

Насос

Прежде чем пойти дальше, рассмотрим гидравлическую аналогию. Пусть из деревни в город по трубе подается минеральная вода. Утром в деревне запустили насос, и он стал повышать давление воды в трубе, чтобы заставить воду из деревенского источника двигаться в город. Изменение давления распространяется по трубопроводу очень быстро, примерно со скоростью 1400 км/с (зависит от плотности воды, от ее температуры, от величины давления).

Спустя долю секунды после пуска насоса в деревне, вода начала двигаться уже в городе. Но та же ли это вода, что движется в данный момент в деревне? Нет! Молекулы воды в нашем примере толкают друг друга, а сами движутся значительно медленнее, поскольку скорость их дрейфа зависит от величины напора. Толкотня молекул между собой распространяется на много порядков быстрее чем движение молекул вдоль трубы.

Так и с электрическим током: скорость распространения электрического поля аналогична распространению давления, а скорость движения электронов, образующих ток, аналогична движению непосредственно молекул воды.

Теперь вернемся непосредственно к электронам. Скорость упорядоченного движения электронов (или других носителей заряда) называют дрейфовой скоростью. Ее электроны приобретают благодаря действию внешнего электрического поля.

Если внешнего электрического поля нет, то электроны движутся хаотично внутри проводника лишь в тепловом движении, но направленного тока нет, и следовательно дрейфовая скорость в среднем оказывается равной нулю.

Если внешнее электрическое поле приложено к проводнику, то в зависимости от материала проводника, от массы и заряда носителей заряда, от температуры, от разности потенциалов, — носители заряда придут в движение, но скорость этого движения будет существенно меньше скорости света, порядка 0,5 мм в секунду (для медного проводника сечением 1 мм2, по которому течет ток 10 А, средняя скорость дрейфа электронов составит 0,6–6 мм/c).

Эта скорость зависит от концентрации свободных носителей заряда в проводнике n, от площади сечения проводника S, от заряда частицы e, от величины тока I. Как видите, несмотря на то, что электрический ток (фронт электромагнитной волны) распространяется по проводнику со скоростью света, сами электроны движутся куда медленнее. Получается, что скорость тока — это очень малая скорость.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Электрический ток и его скорость

Изображение

Жизнь современного человека полна комфорта. Сегодня мы имеем все блага цивилизации в свободном доступе. Главным достижением, которое совершенствовалось в течение долгого времени, является электрическая энергия, доступная практически в любой части мира. Мы привыкли к тому, что электроэнергия повсюду и задумываемся о ней лишь в тот момент, когда она внезапно пропадает. На самом деле явление электричества таит в себе много интересного, что желательно было бы знать каждому человеку.

Например, одним из вопросов, которым нужно задаться, является скорость электрического тока. Мало кто думал о том, как быстро зажжется лампочка, находящаяся в сотне километров от источника энергии. Этот вопрос актуален для населенных пунктов, которые находятся вдали от цивилизации.

Опытным путем учеными и исследователями было доказано, что электрический сигнал движется по кабелю со скоростью света, а именно 300 тысяч км/сек.

Важно отметить, что электроны и ионы в проводнике при этом движутся совсем не с такой скоростью. Они просто на просто не могут иметь столь высокую скорость в проводящем материале.

Под скоростью света в случае с электрическим током понимается показатель скорости, с которым заряженные частицы приходят в движение друг за другом, а не движутся относительно друг друга. Носители заряда при этом обладают средней скоростью, равной, как правило, нескольким миллиметрам за 1 сек.

Более подробно объясним данную ситуацию примером:

К заряженному конденсатору присоединяются провода большой длины, идущие к лампе, что находится на расстоянии около 100 км. Замыкание цепи происходит вручную. После этого носители зарядов приходят в движение на том отрезке провода, который подключен к конденсатору. При этом начинается покидание электронами минусовой обкладки конденсатора, следовательно, происходит уменьшение электрического поля в конденсаторе параллельно с уменьшением плюсовой обкладки.

Таким образом, между обкладками сокращается разность потенциалов. При этом электроны, пришедшие в движение, приходят на место тех, что ушли. То есть, запущен процесс перераспределения электронов внутри провода за счет влияния электрического поля. Данный процесс растет, как снежный ком, и переходит дальше по всей длине провода, достигая в итоге нити накаливания лампы.

Получается, что перемены в состоянии электрического поля распространяются внутри проводника со скоростью, равной скорости света. При этом происходит активация электронов в электрической цепи с аналогичной скоростью. Хотя сами электроны движутся друг за другом по проводнику с гораздо меньшей скоростью.

Теперь разберемся в явлении гидравлической аналогии. Рассмотрим это понятие на примере движения водного потока из пункта А в пункт Б.

Допустим, что из небольшого населенного пункта по трубе в город поступает вода. Для этого функционирует специальный насос, который повышает давление внутри трубы, и вода под влиянием давления движется гораздо быстрее. Малейшие перемены в давлении по трубе распространяются очень быстро (приблизительно 1400 км/сек). Скорость распространения данных перемен напрямую зависит от показателя плотности жидкости, ее температуры и степени оказываемого давления. Через совсем короткий промежуток времени (доля секунды) вода уже поступила в город. Но это уже совсем другая вода. Ведь молекулы в ее составе провоцируют движение друг друга из-за столкновений между собой. При этом скорость движения данных молекул гораздо меньше, ведь дрейфовая скорость имеет прямую связь с силой напора. То есть, столкновения молекул друг с другом распространяются очень быстро, а скорость одной молекулы при этом не увеличивается.

Абсолютно аналогичный процесс происходит с электрическим током. Проведем параллели: скорость распространения поля есть скорость распространения давления, а скорость движения молекул, следовательно, есть скорость электронов, создающих ток.

Дрейфовая скорость – это скорость последовательного движения заряженных частиц. Электронами данная скорость приобретается за счет действия внешнего электрического поля.

В случае, если внешнее электрическое поле отсутствует, то движение электронов внутри проводника происходит хаотично. Иными словами, конкретного направления у электрического тока нет, а дрейфовая скорость при этом нулевая.

При наличии внешнего электрического поля у проводника носители заряда приходят в движение, скорость которого зависит от ряда факторов (концентрация свободных электронов, площадь сечения провода, величины тока).

Таким образом, электрический ток имеет скорость распространения по проводнику равную скорости света. При этом скорость движения тока в проводнике – очень мала.

Вам будут интересны такие познавательные статьи, как:

  • Блуждающие токи: причина возникновения и защита от них
  • Причины возникновения короткого замыкания и методы его устранения
  • Влияние электрического тока на организм человека
  • Энергетическая система страны
  • Влияние света на организм человека

Почему ток в розетке и проводах не бежит со скоростью света? Или все-таки.

скорость тока в проводах

Любой человек, разбирающийся в физике, скажет, что скорость движения электрического тока равна скорости света и составляет 300 тысяч километров в секунду. С одной стороны он прав на 100%, но есть нюансы. Со светом все просто и прозрачно: скорость полета фотона равна скорости распространения светового луча. С электронами сложнее. Электрический ток сильно отличается от видимого излучения. Почему считается, что скорость полета фотонов в вакууме и скорость электронов в проводнике одинакова? Утверждение основано на фактических результатах. В 1888 году немецкий ученый Генрих Герц экспериментально установил, что электромагнитная волна распространяется в вакууме так же быстро как свет. Но можно ли говорить, что электроны в проводнике летят со скоростью света? Надо разобраться с природой электричества.

Что такое электрический ток?

Из школьного курса физики известно, что электричество – это поток электронов, упорядоченно перемещающихся в проводнике. Пока источника электричества нет, электроны движутся в проводнике хаотически, в разных направлениях. Если суммировать траектории всех заряженных частиц, получится ноль. Поэтому кусок металла не бьет током. Если металлический предмет подсоединить к электрической цепи, все электроны в нем выстроятся в цепочку и потекут от одного полюса к другому. Насколько быстро произойдет упорядочение? Со скоростью света в вакууме. Но это не означает, что электроны полетели от одного полюса к другому также стремительно. Это заблуждение. Просто люди настолько привыкли к утверждению, что электричество распространяется так же быстро как свет, что не особо задумываются над деталями.

Популярные заблуждения о скорости света

гроза новосибирск академгородок

Еще одним примером такого поверхностного восприятия можно назвать понятие о природе молнии. Многие ли задумываются, какие физические процессы происходят во время грозы? Какова, например, скорость молнии? Можно ли без приборов узнать, на какой высоте бушуют грозовые разряды? Разберемся со всем этим по порядку. Кто-то может сказать, что молния бьет со скоростью света, и будет не прав. Настолько быстро распространяется вспышка, вызванная гигантским электрическим разрядом в атмосфере, но сама молния гораздо медленнее. Грозовой разряд – это не удар луча света наподобие лазера, хотя визуально похоже. Это сложная структура в насыщенной электричеством атмосфере. Ступенчатый лидер или главный канал молнии формируется в несколько этапов. Каждая ступень в десятки метров образуется со скоростью около 100 км/сек вдоль разрядных нитей из ионизированных частиц. Направление меняется на каждом этапе, поэтому молния имеет вид извилистой линии. 100 километров в секунду – это быстро, но до скорости электромагнитной волны очень далеко. В три тысячи раз.

Что быстрее: молния или гром?

Этот детский вопрос имеет простой ответ – молния. Из того же школьного курса физики известно, что скорость звука в воздухе равна примерно 331 м/сек. Почти в миллион раз медленнее электромагнитной волны. Зная это, легко понять, как высчитать расстояние до молнии. Свет вспышки доходит до нас в момент разряда, а звук летит дольше. Достаточно засечь промежуток времени между вспышкой и громом. Теперь просто считаем, насколько далеко от нас ударила молния, по простой формуле: L =T × 331 Где T – это время от вспышки до грома, а L – это расстояние от нас до молнии в метрах. Например, гром прогремел через 7.2 секунды после вспышки. 331 × 7.2 = 2383. Получается, что молния ударила на высоте 2 километра 383 метра.

Скорость электромагнитной волны – это не скорость тока

Теперь будем более внимательны к цифрам и терминам. На примере молнии убедились, что маленькое неверное допущение может привести к большим промахам. Точно известно, что скорость распространения электромагнитной волны равна 300 000 километров в секунду. Однако это не означает, что электроны в проводнике перемещаются с такой же скоростью. Представим, что две команды соревнуются, кто быстрее доставит мяч с одного края поля на другой. Обязательное условие – каждый член команды сделает несколько шагов с мячом в руках. В одной команде пять человек, а в другой – один. Пятеро, выстроившись в цепочку, сыграют в пас, сделав каждый несколько шагов в направлении от старта к финишу. Одиночке придется бежать всю дистанцию. Очевидно, что победят пятеро, потому что мяч летит быстрее, чем человек бегает. Так же и с электричеством. Электроны «бегают» медленно (собственная скорость элементарных частиц в направленном потоке исчисляется миллиметрами в секунду), но передают друг другу «мячик» заряда очень быстро. При отсутствии разности потенциалов на разноименных концах проводника все электроны движутся хаотично. Это тепловое движение, присутствующее в каждом веществе.

Если бы электроны двигались в проводах со скоростью света

адронный коллайдер

Представим, что скорость электронов в проводнике все-таки близка к световой. В этом случае современная энергетика была бы невозможна в привычном для нас виде. Если бы электроны двигались по проводам, пролетая 300 000 километров в секунду, пришлось бы решать очень сложные технические задачи. Самая очевидная проблема: на такой скорости электроны не смогут следовать за поворотами проводов. Разогнавшись на прямом участке, заряженные частицы будут вылетать по касательной как не вписавшиеся в вираж автомобили. Чтобы удержать летящие на космических скоростях электроны внутри энергетических магистралей, придется снабжать провода электромагнитными ловушками. Каждый участок проводки станет похожим на фрагмент адронного коллайдера.

К счастью элементарные частицы предвигаются гораздо медленнее и для передачи энергии на дальние расстояния вполне пригодны неизолированные алюминиевые провода для ЛЭП

Надеемся, что ознакомившись с этим обзором, вы нашли ответ на вопрос почему ток не бежит по кабелям со скоростью света и вспомнили кое-что из школьного курса физики, а это, согласитесь, крайне полезно в любом возрасте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *