Закон полного тока в вакууме
Перейти к содержимому

Закон полного тока в вакууме

  • автор:

1.6. Закон полного тока для магнитного поля в вакууме(теорема о циркуляции вектора в).@

В разделе “Электростатика” было доказано, что циркуляция вектора напряженности электростатического поля вдоль замкнутого контура равна нулю, откуда следует потенциальный характер электростатического поля. Одним из основных отличий магнитного поля от электростатического поля является его непотенциальность. Для доказательства этого рассмотрим линейный интеграл от В по замкнутому пути в магнитном поле, создаваемом током, т.е.

где– вектор элемента длины контура, направленный вдоль обхода контура; В – проекция вектора на направление касательной к контуру. Данный интеграл называется циркуляцией векторапо заданному замкнутому контуру.

Рассмотрим частный случай: круговой путь является силовой линией радиуса R магнитного поля прямолинейного бесконечного проводника с током (рис.1.9). Магнитная индукция для этого случая была подсчитана ранее, и во всех точках окружности вектор составляет:

Угол между векторамииравен нулю, поэтомуcos(,)=1. Из полученного результата следует, что циркуляция вектора магнитной индукции вдоль силовой линии прямолинейного проводника с током не равна нулю, т.е. поле такого проводниканепотенциально. Оно называется вихревым. Полученная формула справедлива для любой формы замкнутого контура, охватывающего проводник с током.

Пусть теперь наш контур произвольной формы охватывает n проводников с токами I1, …In. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. При этом положительным считается ток, если он с направлением обхода контура образует правовинтовую систему. Ток противоположного направления считается отрицательным.

Разберем пример, изображенный на рис.1.12. Найдем сумму токов, т.е. полный ток, охватываемый контуром:

ТокI3 не учитывается, т.к. он не охватывается контуром. В результате имеем

Таким образом, циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром:

Данное выражение представляет собой закон полного тока для магнитного поля в вакууме, или теорему о циркуляции вектора В.

Все вышерассмотренное относится к вакууму. Можно доказать, что циркуляция вектора вдоль замкнутого контура, не охватывающего проводник с током, равна нулю.

Рассмотренная нами теорема имеет в магнитостатике такое же значение, как теорема Гаусса в электростатике. Она позволяет находить магнитную индукцию различных полей без применения закона Био-Савара-Лапласа.

1.7. Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.@

Аналогично определению электрического потока, или числа силовых линий Е, пересекающих поверхностьS, определим магнитный поток, поток вектора магнитной индукции, или число силовых линий , пересекающих поверхностьS. Потоком вектора магнитной индукции через элементарную площадку dS называется физическая величина dФm, равная произведению величины этой площадки и проекции вектора В на направление нормали к площадке dS (рис. 1.13):

Интегрируя это выражение по S, получим магнитный поток Фmсквозь произвольную замкнутую поверхностьS: .

Для однородного поля и плоской поверхности, расположенной перпендикулярно В, поток рассчитывают по формуле Ф = ВS, из которой можно определить единицу магнитного потока, которая называется вебер (Вб). 1 Вб – это такой магнитный поток, который проходит через плоскую поверхность площадью 1 м 2 , расположенную перпендикулярно магнитному полю, индукция которого равна 1Тл: 1Вб=1Тл∙1 м 2 .

Мы уже знаем, что силовые линии магнитного поля замкнуты. Поэтому, интеграл ∫ Вds по любой замкнутой поверхности должен быть равен нулю, так как внутрь поверхности входит тот же поток, что и выходит из нее. Если имеется k токов, то создаваемый ими магнитный поток: Здесь Вn — проекция В на нормаль к ds. Поскольку каждый интеграл по отдельности равен нулю, то и

вышеизложенное составляет суть теоремы Гаусса для потока магнитного поля Фm. Поток магнитного поля через любую замкнутую поверхность равен нулю. Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Закон полного тока в вакууме

Эксперт раздела «Вопрос электрику», автор статей. Электромонтер по ремонту и обслуживанию электрооборудования, опыт работы более 5 лет.

Знакомый многим предмет под названием «Электротехника» содержит в своей программе ряд основополагающих законов, определяющих принципы физического взаимодействия для магнитного поля. Они распространяют свое действие на различные элементы электротехнических устройств, а также на входящие в их состав структуры и среды. Физика происходящих в них процессов касается таких базовых понятий, как потоки электричества и поля. Закон полного тока устанавливает зависимость между перемещением электрических зарядов и создаваемым им магнитным полем (точнее – его напряженностью). Современная наука утверждает, что его применение распространяется практически на все среды.

Суть закона

Рассматриваемый закон, применимый в магнитных цепях, определяет следующую количественную связь между входящими в него составляющими. Циркуляция вектора магнитного поля по замкнутому контуру пропорциональна сумме токов, пронизывающих его. Чтобы понять физический смысл закона полного тока – потребуется ознакомиться с графическим представлением описываемых им процессов.

Два проводника, по которым протекает ток

Из рисунка видно, что около двух проводников с протекающими по ним токами I1 и I2 образуется поле, ограниченное контуром L. Оно вводится как мысленно представляемая замкнутая фигура, плоскость которой пронизывают проводники с движущимися зарядами. Простыми словами этот закон можно выразить так. При наличии нескольких потоков электричества через мысленное представляемую поверхность, охватываемую контуром L, в ее пределах формируется магнитное поле с заданным распределением напряженности.

За положительное направление движения вектора в соответствии с законом для контура магнитной цепи выбирается ход часовой стрелки. Оно также является мысленно представляемым.

Такое определение создаваемого токами вихревого поля предполагает, что направление каждого из токов может быть произвольным.

Для справки! Вводимую полевую структуру и описывающий ее аппарат следует отличать от циркуляции электростатического вектора «Е», который при обходе контура всегда равен нулю. Вследствие этого такое поле относится к потенциальным структурам. Циркуляция же вектора «В» магнитного поля никогда не бывает нулевой. Именно поэтому оно называется «вихревым».

Основные понятия

В соответствии с рассматриваемым законом для расчета магнитных полей применяется следующий упрощенный подход. Полный ток представляется в виде суммы нескольких составляющих, протекающих через поверхность, охватываемую замкнутым контуром L. Теоретические выкладки могут быть представлены следующим образом:

  1. Полный электрический поток, пронизывающих конур Σ I – это векторная сумма I1 и I2.
  2. В рассматриваемом примере для его определения используется формула:
    ΣI = I1- I2 (минус перед вторым слагаемым означает, что направления токов противоположны).
  3. Они, в свою очередь, определяются по известному в электротехнике закону (правилу) буравчика.

Напряженность магнитного поля вдоль контура вычисляется на основании полученных выкладок по специальным методикам. Для ее нахождения придется проинтегрировать этот параметр по L, используя уравнение Максвелла, представленное в одной из форм. Оно может быть применено и в дифференциальной форме, но это несколько усложнит выкладки.

Упрощенный подход в интегральном виде

Если воспользоваться дифференциальным представлением – выразить закон полного тока в упрощенном виде будет очень сложно (в этом случае в него приходится вводить дополнительные компоненты). Добавим к этому, что магнитное вихревое поле, создаваемое движущимся в пределах контура токами, определяется в этом случае с учетом тока смещения, зависящего от скорости изменения электрической индукции.

Поэтому на практике в ТОЭ большей популярностью пользуется представление формул для полных токов в виде суммирования микроскопически малых отрезков контура с создаваемыми в них вихревыми полями. Этот подход предполагает применение уравнения Максвелла в интегральной форме. При его реализации контур разбивается на мелкие отрезки, в первом приближении считающиеся прямолинейными (согласно закону предполагается, что магнитное поле однородно). Эта величина, обозначаемая как Um для одного дискретного участка длиной ΔL магнитного поля, действующего в вакууме, определяется так:

Суммарная напряженность вдоль полного контура L, представленная кратко в интегральном виде, находится по следующей формуле:

Закон полного тока для вакуума

В окончательном виде, оформленном по всем правилам интегрирования, закон полного тока выглядит так. Циркуляция вектора «В» по замкнутому контуру может быть представлена как произведение магнитной постоянной m на сумму токов:

Интеграл от B по dL = интегралу от Bl по dL= m Σ In

где n – это обще число проводников с разнонаправленными токами, охватываемыми мысленно представляемым контуром L произвольной формы.

Каждый ток учитывается в этой формуле столько раз, сколько он полностью охватывается данным контуром.

На окончательный вид полученных выкладок для закона полного тока большое влияние оказывает среда, в которой действует наведенная электромагнитная сила (поле).

Влияние среды

Рассмотренные отношения для закона токов и полей, действующих не в вакууме, а в магнитной среде, приобретают несколько иной вид. В этом случае помимо основных токовых составляющих вводится понятие микроскопических токов, возникающих в магнетике, например, или в любом подобном ему материале.

Нужное соотношение в полном виде выводится из теоремы о векторной циркуляции магнитной индукции B. Простым языком она выражается в следующем виде. Суммарное значение вектора B при интегрировании по выбранному контуру равно сумме охватываемых им макро токов, умноженной на коэффициент магнитной постоянной.

В итоге формула для «В» в веществе определяется выражением:

где: dL – дискретный элемент контура, направленный вдоль его обхода, Вl– составляющая в направлении касательной в произвольной точке,бI и I1 – ток проводимости и микроскопический (молекулярный) ток.

Если поле действует в среде, состоящей из произвольных материалов – должны учитываться микроскопические токи, характерные именно для этих структур.

Эти выкладки также верны для поля, создаваемого в соленоиде или в любой другой среде, обладающей конечной магнитной проницаемостью.

Для справки

В самой полной и объемлющей системе измерений СГС напряженность магнитного поля представляется в эрстедах (Э). В другой действующей системе (СИ) она выражается в амперах на один метр (А/метр). Сегодня эрстед постепенно вытесняется более удобной в работе единицей – ампером на метр. При переводе результатов измерений или расчетов из СИ в СГС используется следующее соотношение:

1 Э = 1000/(4π) А/м ≈ 79,5775 Ампер/метр.

В заключительной части обзора отметим, что независимо от того, какая используется формулировка закона полных токов – суть его остается неизменной. Своими словами это можно представить так: он выражает отношения между токами, пронизывающими данный контур и создаваемыми в веществе магнитными полями.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Материалы по теме:

  • Что такое электрическое поле
  • Зависимость сопротивления проводника от температуры
  • Величайшие открытия Николы Тесла

Опубликовано 03.07.2019 Обновлено 03.07.2019 Пользователем Александр (администратор)

Курс лекций, модуль 5

§29. Теорема о циркуляции вектора для поля постоянных токов в вакууме (или закон полного тока)

Циркуляцией вектора В по заданному контуру называется интеграл:

где – элементарный вектор длины контура, направленный вдоль контура.

где В l – составляющая вектора в направлении касательной к контуру;

– угол между векторами и .

Теорема о циркуляции , или закон полного тока (для МП постоянных токов в вакууме):

Циркуляцией вектора по произвольному замкнутому контуру L в вакууме равна произведению μ0 на алгебраическую сумму токов, охватываемых контуром L .

где сила тока, величина алгебраическая, N – число проводников с токами, охватываемых контуром L .

Каждый ток учитывается столько раз, сколько он охватывается контуром. Ток считается положительным, если его направление связано с направлением обхода правилом правого винта. Ток противоположного направления считается отрицательным.

Например: (смотри рис. 29.1)

Выражение (29.5) справедливо только для поля в вакууме. Формула (29.3) – постулат, подтвержденный экспериментально.

Если ток I распределен по объему, то

где – произвольная поверхность, натянутая на контур. И тогда (29.3) можно записать так:

Факт, что циркуляция вектора , вообще говоря, не равна нулю, означает, что поле не потенциально. Поле называют вихревым или соленоидальным.

Закон (29.7) называют еще законом полного тока.

Теорема о циркуляции вектора играет примерно такую же роль, что и теорема Гаусса для векторов и .

Но циркуляция определяется только теми токами, которые охватывают данный контур. При наличии специальной симметрии теорема о циркуляции оказывается весьма эффективной, позволяя очень просто находить .

Закон полного тока для магнитного поля

Поскольку электрические и магнитные поля связаны между собой важно не только понимать их взаимодействие, но и знать, каким законам оно подчиняется. Одним из них является закон полного электрического тока.

Определение полного тока

При протекании электротока вокруг проводников образуется электромагнитное поле. Его направление определяется правилом буравчика. Если смотреть с того направления, к которому течёт ток, то силовые линии магнитного поля направлены по окружностям в соответствии с вращением буравчика.

Протекание электротока через контур

Мысленно магнитное поле можно представить в виде плоскости, ограниченной контуром какой-либо замкнутой фигуры. В пределах этой плоскости напряженность магнитного поля распределяется в соответствии с направлениями токов. При этом полный электрический ток будет представлять собой векторную сумму всех токов, пронзающих воображаемый контур:

Данная формулировка представляет собой упрощенную модель рассматриваемого закона. На самом деле происходит более сложное взаимное влияние магнитного и электрического полей. Для описания этих процессов используются интегральные и дифференциальные уравнения Максвелла.

При расчете магнитной цепи используется закон о циркуляции вектора напряженности, который считается одним из основных и формулируется так:

Циркуляция вектора напряженности

Интегральная формула полного тока

Чтобы сформулировать закон, нужно представить замкнутый контур, внутри которого расположены один или несколько проводов, по которым проходит электроток. Контур может иметь произвольную форму, но он должен быть замкнутым. Чтобы произвести вычисления, необходимо разбить кривую на элементарные участки, которые настолько малы, что их с минимальной погрешностью можно считать прямыми отрезками.

Правило буравчика

В таком случае по правилу буравчика можно определить направление напряжённости магнитного поля, создаваемого каждым проводником на каждом элементарном отрезке. Чтобы получить суммарный результат, потребуется провести интегрирование по контуру.

Интегральная формула для закона полного тока выглядит следующим образом:

Поле бесконечного прямого тока

С учетом выражения

формулу можно записать так:

Формула в интегральном виде

Она представляет собой постулат, подтвержденный экспериментально. Согласно ему циркуляция вектора магнитной индукции по замкнутому контуру равна μ0I, где μ0 — это магнитная постоянная.

Теорема о циркуляции вектора магнитной индукции основывается на законе Био-Савара и принципе суперпозиции магнитного поля. В общем виде она имеет такую формулировку:

Циркуляция вектора магнитной индукции

Для произвольного тока (распределенного в пространстве) справедливо следующее равенство:

Формула для произвольного тока

С учетом данного равенства формула полного тока в вакууме приобретает следующий вид:

Уравнение для закона полного тока в вакууме

В левой части применяется интегрирование по контуру вектора магнитной индукции. В правой части рассматривается сумма токов, проходящих внутри контура, умноженная на магнитную постоянную.

Формулировка закона для вакуума

Взаимодействие электротоков и магнитных потоков зависит от той среды, в которой они пребывают. Кроме того, разные вещества обладают разной магнитной проницаемостью. С учетом этого закон полного тока для магнитного поля в веществе выражается такой формулой:

Закон для магнитного поля в веществе

Дифференциальная формула

Чтобы получить дифференциальную формулу, следует вместо интегрирования по контуру L использовать интегрирование по площади S. Необходимо также воспользоваться теоремой Стокса для векторного анализа:

Теорема Стокса

Объединив это уравнение с формулой полного тока, получим следующее выражение:

Обобщенное выражение

С учетом того, что интегралы в левой и правой частях равны, выражение приобретает следующий вид:

Данное выражение — это формула закона полного тока в дифференциальной форме.

Значение закона полного тока

Он применяется для расчёта магнитных цепей. Обычно его используют вместе с законом Био-Савара-Лапласа. Это позволяет решать следующие задачи:

  • Расчёт электродвигателей, использующих постоянный ток.
  • Вычисление параметров катушек с тороидальными сердечниками.
  • Определение параметров однофазных и трёхфазных трансформаторов.
  • Определение характеристик аналоговых измерительных приборов.
  • Расчёт электромагнитов, которые применяются в различных системах для механического воздействия. Это относится, например, к некоторым системам очистки, к определённым разновидностям подъёмных механизмов.
  • Расчёт электрических реле.

Знание законов взаимодействия электрического и магнитного полей позволяет точно рассчитать необходимые рабочие параметры магнитной цепи, обеспечив высокое качество работы различных устройств.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *