Виды нейтралей в электрических сетях
Система заземления TN
В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит, что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).
В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.
Система заземления TT
Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.
Система заземления IT
В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.
Виды заземления нейтрали в электросетях выше 1кВ
В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.
Сети с незаземленной (изолированной) нейтралью
Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.
Сети с эффективно-заземленной нейтралью
Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.
Сети с нейтралью, заземленной через резистор или реактор
Применяется в сетях 3-35 кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.
Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).
Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.
- величина емкостного тока сети;
- допустимая величина однофазного замыкания;
- возможности отключения однофазного замыкания;
- вида и типа релейных защит;
- безопасности персонала;
- наличия резерва.
Режимы работы нейтралей в электроустановках.
Нейтралями электроустановок называют общие точки трехфазных обмоток генераторов или трансформаторов, соединенных в звезду.
В зависимости от режима нейтрали электрические сети разделяют на четыре группы:
- сети с незаземленными (изолированными) нейтралями;
- сети с резонансно-заземленными (компенсированными) нейтралями;
- сети с эффективно заземленными нейтралями;
- сети с глухозаземленными нейтралями.
Согласно требованиям Правил устройства электроустановок (ПУЭ, гл. 1.2).
Сети с номинальным напряжением до 1 кВ, питающиеся от понижающих трансформаторов, присоединенных к сетям с Uном > 1 кВ, выполняются с глухим заземлением нейтрали.
Сети с Uном до 1 кВ, питающиеся от автономного источника или разделительного трансформатора (по условию обеспечения максимальной электробезопасности при замыканиях на землю), выполняются с незаземленной нейтралью.
Сети с Uном = 110 кВ и выше выполняются с эффективным заземлением нейтрали (нейтраль заземляется непосредственно или через небольшое сопротивление).
Сети 3 — 35 кВ, выполненные кабелями, при любых токах замыкания на землю выполняются с заземлением нейтрали через резистор.
Сети 3—35 кВ, имеющие воздушные линии, при токе замыкания не более 30 А выполняются с заземлением нейтрали через резистор.
Компенсация емкостного тока на землю необходима при значениях этого тока в нормальных условиях:
- в сетях 3 — 20 кВ с железобетонными и металлическими опорами ВЛ и во всех сетях 35 кВ — более 10 А;
- в сетях, не имеющих железобетонных или металлических опор ВЛ:
при напряжении 3 — 6 кВ — более 30 А;
при 10 кВ — более 20 А;
при 15 — 20 кВ — более 15 А; - в схемах 6 — 20 кВ блоков генератор — трансформатор — более 5А
При токах замыкания на землю более 50 А рекомендуется установка не менее двух заземляющих дугогасящих реакторов.
Режимы работы нейтралей в электроустановках
Нейтралями электроустановок называют общие точки обмотки генераторов или трансформаторов, соединенные в звезду.
Вид связи нейтралей машин и трансформаторов с землей в значительной степени определяет уровень изоляции электроустановок и выбор коммутационной аппаратуры, значения перенапряжений и способы их ограничения, токи при однофазных замыканиях на землю, условия работы релейной защиты и безопасности в электрических сетях, электромагнитное влияние на линии связи и т.д.
В зависимости от режима нейтрали электрические сети разделяют на четыре группы:
- сети с незаземленными (изолированными) нейтралями;
- сети с резонансно-заземленными (компенсированными) нейтралями;
- сети с эффективно-заземленными нейтралями;
- сети с глухозаземленными нейтралями.
В России к первой и второй группам относятся сети напряжением 3-35 кВ, нейтрали трансформаторов или генераторов которых изолированы от земли или заземлены через заземляющие реакторы.
Сети с эффективно-заземленными нейтралями применяют на напряжение выше 1 кВ. В них коэффициент замыкания на землю не превышает 1,4. Коэффициентом замыкания на землю называют отношение разности потенциалов между неповрежденной фазой и землей в точке замыкания на землю поврежденной фазы к разности потенциалов между фазой и землей в этой точке до замыкания. В соответствии с рекомендациями Международного электротехнического комитета (МЭК) к эффективно-заземленным сетям относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление. В Советском Союзе к этой группе относятся сети напряжением 110 кВ и выше.
К четвертой группе относятся сети напряжением 220, 380 и 660 В.
Режим работы нейтрали определяет ток замыкания на землю. Сети, в которых ток однофазного замыкания на землю менее 500 А, называют сетями с малыми токами замыкания на землю (в основном это сети с незаземленными и резонансно-заземленными нейтралями). Токи более 500 А соответствуют сетям с большими токами замыкания на землю (это сети с эффективно-заземленными нейтралями).
Трехфазные сети с незаземленными (изолированными) нейтралями
В сетях с незаземленными нейтралями токи при однофазном замыкании на землю протекают через распределенные емкости фаз, которые для упрощения анализа процесса условно заменяют емкостями, сосредоточенными в середине линий (рис.1). Междуфазные емкости при этом не рассматриваются, так как при однофазных повреждениях их влияние на токи в земле не сказывается.
Рис.1. Трехфазная сеть с незаземленной нейтралью
а — нормальный режим;
б — режим замыкания фазы А на землю;
в — устройство для обнаружения замыканий на землю
В нормальном режиме работы напряжения фаз сети относительно земли симметричны и равны фазному напряжению, а емкостные (зарядные) токи фаз относительно земли также симметричны и равны между собой (рис.1,а). Емкостный ток фазы
(1)
где С — емкость фазы относительно земли.
Геометрическая сумма емкостных токов трех фаз равна нулю. Емкостный ток нормального режима в одной фазе в современных сетях с незаземленной нейтралью, как правило, не превышает нескольких ампер и практически не влияет на загрузку генераторов.
В случае металлического замыкания на землю в одной точке напряжения неповрежденных фаз относительно земли возрастают в √з раз и становятся равными междуфазному напряжению. Например, при замыкании на землю фазы А (рис.1,б) поверхность земли в точке повреждения приобретает потенциал этой фазы, а напряжения фаз В и С относительно земли становятся соответственно равными междуфазным напряжениям . Емкостные токи неповрежденных фаз В и С также увеличиваются в соответствии с увеличением напряжения в √3 раз. Ток на землю фазы А, обусловленный ее собственной емкостью, будет равен нулю, так как эта емкость оказывается закороченной.
Для тока в месте повреждения можно записать:
(2)
т.е. геометрическая сумма векторов емкостных токов неповрежденных фаз определяет вектор тока через место повреждения. Ток IС оказывается в 3 раза больше, чем емкостный ток фазы в нормальном режиме:
(3)
Согласно (1.3) ток IС зависит от напряжения сети, частоты и емкости фаз относительно земли, которая зависит в основном от конструкции линий сети и их протяженности.
Приближенно ток Iс, А, можно определить по следующим формулам:
для воздушных сетей
(4)
для кабельных сетей
(5)
где U — междуфазное напряжение, кВ; l — длина электрически связанной сети данного напряжения, км.
В случае замыкания на землю через переходное сопротивление напряжение поврежденной фазы относительно земли будет больше нуля, но меньше фазного, а неповрежденных фаз — больше фазного, но меньше линейного. Меньше будет и ток замыкания на землю.
При однофазных замыканиях на землю в сетях с незаземленной нейтралью треугольник линейных напряжений не искажается, поэтому потребители, включенные на междуфазные напряжения, продолжают работать нормально.
Вследствие того что при замыкании на землю напряжение неповрежденных фаз относительно земли увеличивается в √з раз по сравнению с нормальным значением, изоляция в сетях с незаземленной нейтралью должна быть рассчитана на междуфазное напряжение. Это ограничивает область использования этого режима работы нейтрали сетями с напряжением 35 кВ и ниже, где стоимость изоляции электроустановок не является определяющей и некоторое ее увеличение компенсируется повышенной надежностью питания потребителей, если учесть, что однофазные замыкания на землю составляют в среднем до 65% всех нарушений изоляции.
В то же время необходимо отметить, что при работе сети с замкнутой на землю фазой становится более вероятным повреждение изоляции другой фазы и возникновение междуфазного короткого замыкания через землю (рис.2). Вторая точка замыкания может находиться на другом участке электрически связанной сети. Таким образом, короткое замыкание затронет несколько участков сети, вызывая их отключение. Например, в случае, показанном на рис.2, могут отключиться сразу две линии.
Рис.2. Двойные замыкания на землю в сети с незаземленной нейтралью
В связи с изложенным в сетях с незаземленными нейтралями обязательно предусматривают специальные сигнальные устройства, извещающие персонал о возникновении однофазных замыканий на землю.
Так, на рис.1, в показан способ контроля изоляции в сети с незаземленной нейтралью. Устройства контроля подключаются к сети через измерительный трансформатор напряжения типа НТМИ или через группу однофазных трансформаторов типа ЗНОМ.
Вторичные обмотки измерительных трансформаторов (рис.1,в) соединяются по схемам: одна (I) — звезда, вторая (II) — разомкнутый треугольник. Обмотка I позволяет измерять напряжения всех фаз, обмотка II предназначена для контроля геометрической суммы напряжений всех фаз.
Нормально на зажимах обмотки II напряжение равно нулю, поскольку равна нулю геометрическая сумма фазных напряжений всех трех фаз в сети с незаземленной нейтралью. При металлическом замыкании одной фазы в сети первичного напряжения на землю на зажимах обмотки II появляется напряжение, равное геометрической сумме напряжений двух неповрежденных фаз (рис.1,б) Число витков обмотки II подбирается так, чтобы напряжение на ее выводах при металлическом замыкании фазы первичной сети на землю равнялось 100 В. При замыкании на землю через переходное сопротивление напряжение на обмотке II в зависимости от сопротивления в месте замыкания будет 0-100 В.
Реле напряжения, подключаемое к обмотке II, будет при соответствующей настройке реагировать на повреждения изоляции первичной сети и приводить в действие сигнальные устройства (звонок, табло).
Персонал электроустановки может проконтролировать напряжение небаланса (вольтметром V2) и установить поврежденную фазу (вольтметром V1). Напряжение в поврежденной фазе будет наименьшим.
Отыскание места замыкания на землю после получения сигнала должно начинаться немедленно, и повреждение должно устраняться в кратчайший срок. Допустимая длительность работы с заземленной фазой определяется Правилами технической эксплуатации (ПТЭ) и в большинстве случаев не должна превышать 2 ч.
Более опасно однофазное замыкание на землю через дугу, так как дуга может повредить оборудование и вызвать двух- или трехфазное КЗ (последнее часто наблюдается при однофазных замыканиях на землю одной из жил трехфазного кабеля). Особенно опасны дуги внутри машин и аппаратов, возникающие при однофазных замыканиях на заземленные корпуса или сердечники.
При определенных условиях в месте замыкания на землю может возникать так называемая перемежающаяся дуга, т.е. дуга, которая периодически гаснет и зажигается вновь. Перемежающаяся дуга сопровождается возникновением перенапряжений на фазах относительно земли, которые могут достигать 3,5 Uф. Эти перенапряжения распространяются на всю электрически связанную сеть, в результате чего возможны пробои изоляции и образование КЗ в частях установки с ослабленной изоляцией.
Наиболее вероятно возникновение перемежающихся дуг при емкостном токе замыкания на землю более 5-10 А, причем опасность дуговых перенапряжений для изоляции возрастает с увеличением напряжения сети. Допустимые значения тока нормируются и не должны превышать следующих значений:
В сетях 3-20 кВ, имеющих линии на железобетонных и металлических опорах, допускается Ic не более 10 А. В блочных схемах генератор-трансформатор на генераторном напряжении емкостный ток не должен превышать 5А.
Работа сети с незаземленной (изолированной) нейтралью применяется и при напряжении до 1 кВ. При этом основные свойства сетей с незаземленной нейтралью сохраняются и при этом напряжении. Кроме того, эти сети обеспечивают высокий уровень электробезопасности и их следует применять для передвижных установок, торфяных разработок и шахт. Для защиты от опасности, возникающей при пробое изоляции между обмотками высшего и низшего напряжений, в нейтрали или фазе каждого трансформатора устанавливается пробивной предохранитель.
Трехфазные сети с резонансно-заземленными (компенсированными) нейтралями
В сетях 3-35 кВ для уменьшения тока замыкания на землю с целью удовлетворения указанных выше норм применяется заземление нейтралей через дугогасящие реакторы.
В нормальном режиме работы ток через реактор практически равен нулю. При полном замыкании на землю одной фазы дугогасящий реактор оказывается под фазным напряжением и через место замыкания на землю протекает наряду с емкостным током IC также индуктивный ток реактора IL (рис. 3). Так как индуктивный и емкостный токи отличаются по фазе на угол 180°, то в месте замыкания на землю они компенсируют друг друга. Если IC=IL (резонанс), то через место замыкания на землю ток протекать не будет. Благодаря этому дуга в месте повреждения не возникает и устраняются связанные с нею опасные последствия.
Рис.3. Трехфазная сеть с резонансно-заземленной нейтралью
Суммарная мощность дугогасящих реакторов для сетей определяется из выражения
где n — коэффициент, учитывающий развитие сети; ориентировочно можно принять n = 1,25; IC — полный ток замыкания на землю, А; UФ — фазное напряжение сети, кВ.
По рассчитанному значению Q в каталоге подбираются реакторы требуемой номинальной мощности. При этом необходимо учитывать, что регулировочный диапазон реакторов должен быть достаточным для обеспечения возможно более полной компенсации емкостного тока при вероятных изменениях схемы сети (например, при отключении линий и т.п.). При IC ≥ 50 А устанавливают два дугогасящих реактора с суммарной мощностью по (6).
Рис. 4. Устройство дугогасящих реакторов
а — типа РЗДСОМ, б — типа РЗДПОМ
В России применяют дугогасящие реакторы разных типов. Наиболее распространены реакторы типа РЗДСОМ (рис.4,а) мощностью до 1520 кВ А на напряжение до 35 кВ с диапазоном регулирования 1:2. Обмотки этих реакторов располагаются на составном магнитопроводе с чередующимися воздушными зазорами и имеют отпайки для регулирования тока компенсации. Реакторы имеют масляное охлаждение.
Более точно, плавно и автоматически можно производить настройку компенсации в реакторах РЗДПОМ, индуктивность которых изменяется с изменением немагнитного зазора в сердечнике (рис.4,б) или путем подмагничивания стали магнитопровода от источника постоянного тока.
Дугогасящие реакторы должны устанавливаться на узловых питающих подстанциях, связанных с компенсируемой сетью не менее чем тремя линиями. При компенсации сетей генераторного напряжения реакторы располагают обычно вблизи генераторов. Наиболее характерные способы присоединения дугогасящих реакторов показаны на рис.5.
Рис.5. Размещение дугогасящих реакторов в сети
На рис.5,а показаны два дугогасящих реактора, подключенных в нейтрали трансформаторов подстанции, на рис.5.б — реактор, подключенный к нейтрали генератора, работающего в блоке с трансформатором. В схеме на рис.5, в показано подключение дугогасящего реактора к нейтрали одного из двух генераторов, работающих на общие сборные шины. Следует отметить, что при этом цепь подключения реактора должна проходить через окно сердечника трансформатора тока нулевой последовательности (ТНП), что необходимо для обеспечения правильной работы защиты генератора от замыканий на землю.
При подключении дугогасящих реакторов через специальные трансформаторы и трансформаторы собственных нужд, по мощности соизмеримые с мощностью реакторов, необходимо учитывать их взаимное влияние.
В первую очередь это влияние сказывается в уменьшении действительного тока компенсации по сравнению с номинальным из-за наличия последовательно включенного с реактором сопротивления обмоток трансформатора
(7)
где Iном,р — номинальный ток дугогасящего реактора; Uк% — напряжение КЗ трансформатора; Sном,т — номинальная мощность трансформатора.
Особенно резко ограничивающее действие обмоток трансформатора сказывается при использовании схемы соединения обмоток звезда-звезда, так как при однофазных замыканиях на землю индуктивное сопротивление у них примерно в 10 раз больше, чем при междуфазных КЗ. По этой причине для подключения реакторов предпочтительнее трансформаторы со схемой соединения обмоток звезда-треугольник. В свою очередь наличие дугогасящего реактора в нейтрали трансформатора обусловливает при однофазных замыканиях на землю дополнительную нагрузку на его обмотки, что приводит к повышенному нагреву. Это особенно важно учитывать при использовании для подключения реактора трансформаторов, имеющих нагрузку на стороне низшего напряжения, например трансформаторов собственных нужд электростанций и подстанций. Допустимая мощность реактора, подключаемого к нагруженному трансформатору, определяется из выражения
(8)
где Sном,т — номинальная мощность трансформатора; Smax — максимальная мощность нагрузки.
Выражение (8) справедливо с учетом того, что значение cosφ нагрузки обычно близко к единице, а активное сопротивление реактора мало.
С учетом перегрузки трансформатора, допустимой на время работы сети с заземленной фазой и определяемой коэффициентом перегрузочной способности kпер, допустимая мощность реактора, подключаемого к данному трансформатору, равна
(9)
При подключении реактора к специальному ненагруженному трансформатору необходимо выдержать условие (если перегрузка трансформатора допустима).
В сетях с резонансно-заземленной (компенсированной) нейтралью, так же как и в сетях с незаземленными нейтралями, допускается временная работа с замкнутой на землю фазой до тех пор, пока не представится возможность произвести необходимые переключения для отделения поврежденного участка. При этом следует учитывать также допустимое время продолжительной работы реактора 6ч.
Наличие дугогасящих реакторов особенно ценно при кратковременных замыканиях на землю, так как при этом дуга в месте замыкания гаснет и линия не отключается. В сетях с нейтралями, заземленными через дугогасящий реактор, при однофазных замыканиях на землю напряжения двух неповрежденных фаз относительно земли увеличиваются в √3 раз, т.е. до междуфазного напряжения. Следовательно, по своим основным свойствам эти сети аналогичны сетям с незаземленными (изолированными) нейтралями.
Трехфазные сети с эффективно-заземленными нейтралями
В сетях 110 кВ и выше определяющим в выборе способа заземления нейтралей является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтралей, при котором во время однофазных замыканий напряжение на неповрежденных фазах относительно земли равно примерно 0,8 междуфазного напряжения в нормальном режиме работы. Это основное достоинство такого способа заземления нейтрали.
Рис.6. Трехфазная сеть с эффективно-заземленной нейтралью
Однако рассматриваемый режим нейтрали имеет и ряд недостатков. Так, при замыкании одной фазы на землю образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, к которому приложена ЭДС фазы (рис.6). Возникает режим КЗ, сопровождающийся протеканием больших токов. Во избежание повреждения оборудования длительное протекание больших токов недопустимо, поэтому КЗ быстро отключаются релейной защитой. Правда, значительная часть однофазных повреждений в электрических сетях напряжением 110 кВ и выше относится к самоустраняющимся, т.е. исчезающим после снятия напряжения. В таких случаях эффективны устройства автоматического повторного включения (АПВ), которые, действуя после работы устройств релейной защиты, восстанавливают питание потребителей за минимальное время.
Второй недостаток — значительное удорожание выполняемого в распределительных устройствах контура заземления, который должен отвести на землю большие токи КЗ и поэтому представляет собой в данном случае сложное инженерное сооружение.
Третий недостаток — значительный ток однофазного КЗ, который при большом количестве заземленных нейтралей трансформаторов, а также в сетях с автотрансформаторами может превышать токи трехфазного КЗ. Для уменьшения токов однофазного КЗ применяют, если это возможно и эффективно, частичное разземление нейтралей (в основном в сетях 110-220 кВ). Возможно применение для тех же целей токоограничивающих сопротивлений, включаемых в нейтрали трансформаторов.
Сети с глухозаземленными нейтралями
Такие сети применяются на напряжение до 1 кВ для одновременного питания трехфазных и однофазных нагрузок, включаемых на фазные напряжения (рис.7). В них нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформатор тока). Для фиксации фазного напряжения при наличии однофазных нагрузок применяют нулевой проводник, связанный с нейтралью трансформатора (генератора). Этот проводник служит для выполнения также и функции зануления, т.е. к нему преднамеренно присоединяют металлические части электроустановок, нормально не находящиеся под напряжением.
При наличии зануления пробой изоляции на корпус вызовет однофазное КЗ и срабатывание защиты с отключением установки от сети. При отсутствии зануления корпуса (второй двигатель на рис.7) повреждение изоляции вызовет опасный потенциал на корпусе. Целость нулевого проводника нужно контролировать, так как его случайный разрыв может вызвать перекос напряжений по фазам (снижение его на загруженных фазах и повышение на незагруженных). Может быть принято при необходимости раздельное выполнение нулевого защитного и нулевого рабочего проводников.
Рис.7. Трехфазная сеть с глухозаземленной нейтралью
Режимы работы нейтрали
В настоящее время в мировой практике используются следующие способы заземления нейтрали сетей среднего напряжения (6-35 кВ):
- изолированная (незаземленная);
- глухозаземленная (непосредственно присоединенная к заземляющему контуру);
- заземленная через дугогасящий реактор;
- заземленная через резистор (низкоомный или высокоомный).
Способ заземления нейтрали сети является достаточно важной характеристикой. Он определяет:
- ток в месте повреждения и перенапряжения на неповрежденных фазах при однофазном замыкании;
- схему построения релейной защиты от замыканий на землю;
- уровень изоляции электрооборудования;
- выбор аппаратов для защиты от грозовых и коммутационных перенапряжений (ограничителей перенапряжений);
- бесперебойность электроснабжения;
- допустимое сопротивление контура заземления подстанции;
- безопасность персонала и электрооборудования при однофазных замыканиях.
Режим изолированной нейтрали имеет одно неоспоримое преимущество – малый ток однофазных замыканий на землю (ОЗЗ), что позволяет:
- увеличить ресурс выключателей (поскольку однофазные замыкания достигают 90% от общего числа замыканий);
- снизить требования к заземляющим устройствам, определяемые условиями электробезопасности при однофазных замыканиях на землю.
Однако этот режим обладает и целым букетом недостатков (по сравнению с режимом эффективно заземленной нейтрали), к которым следует отнести:
- феррорезонансные явления, вызываемые кратковременными ОЗЗ;
- дуговые перенапряжения, связанные с появлением перемежающейся дуги при ОЗЗ и приводящие к переходу однофазного замыкания в двух- и трехфазное;
- сложность построения селективных защит от ОЗЗ при изолированной нейтрали и их недостаточную работоспособность в сетях с различными режимами и конфигурацией.
К достоинствам сети с изолированной нейтралью часто относят возможность продолжения ее работы при однофазном замыкании, что якобы повышает надежность электроснабжения потребителей. Такое утверждение по меньшей мере архаично. Опыт показывает, что в большинстве случаев однофазные замыкания из-за присущих сети недостатков быстро (если не мгновенно) переходят в двух- и трехфазные (см., например, [4]) и поврежденная линия всё равно отключается.
При сохранении замыкания на землю у опор воздушных линий или у места падения провода возникают опасные напряжения прикосновения. Известно, что около половины тяжелых и смертельных электропоражений приходится на случаи, связанные с замыканиями на землю, а среди общего электротравматизма на первое место давно вышел электротравматизм в сетях среднего напряжения [5].
В настоящее время бесперебойность электроснабжения обеспечивается в основном за счет двухстороннего питания и устройств АВР. Сохранять бесперебойность электроснабжения и одновременно сохранять аварийное состояние сети (ОЗЗ) – способ даже менее разумный, чем давно отжившая система ДПЗ.
Заземление через дугогасящий реактор позволяет в определенных случаях снизить ток замыкания на землю до его погасания, то есть ликвидировать дуговые перенапряжения. Это в свою очередь уменьшает число переходов ОЗЗ в двух- и трехфазные короткие замыкания. Снижение тока ОЗЗ улучшает условия электробезопасности в месте замыкания, хотя полностью не устраняет возможность электропоражения в сетях с воздушными линиями.
Недостатки заземления через дугогасящий реактор (ДГР):
- необходимость симметрирования сети до степени 0,75% фазного напряжения (в сетях с воздушными линиями степень несимметрии всегда не ниже 1–2%, а при двухцепных ВЛ нормально может достигать 5–7%; Правилами технической эксплуатации в некоторых случаях допускается напряжение смещения нейтрали до 30% от фазного напряжения [6,7]);
- сложность и высокая стоимость систем автоматической подстройки ДГР (реакторы с механической подстройкой практически не эксплуатируются); невозможность широкой диапазонной настройки, необходимой для разветвленных городских сетей с часто изменяемой конфигурацией по отношению к питающей подстанции;
- практически полное отсутствие селективных защит от ОЗЗ для сети с заземлением нейтрали через ДГР.
По поводу последнего недостатка можно возразить, что при хорошей компенсации емкостного тока отключение поврежденного присоединения не обязательно. Принимая это возражение, остается констатировать, что применение дугогасящего реактора – это способ сохранения аварийного режима однофазного замыкания, причем способ не дешевый.
Заземление нейтрали через резистор имеет несомненные достоинства, подтвержденные мировой практикой и опытом, накопленным в России:
- полное устранение феррорезонансных явлений;
- снижение уровня дуговых перенапряжений и устранение перехода ОЗЗ в двух- и трехфазные замыкания;
- возможность построения простых селективных защит от ОЗЗ.
К недостаткам резистивного заземления нейтрали следует отнести:
- увеличение тока замыкания на землю (максимум на 40%);
- появление на подстанции греющегося оборудования (резистора мощностью 30–400 кВт).
Эти недостатки незначительны по следующим причинам:
- В сетях с заземленной нейтралью токи короткого замыкания составляют тысячи и десятки тысяч ампер; двойные замыкания на землю в сетях 6–35 кВ приводят к токам в сотни и тысячи ампер. В таких условиях названные сети успешно эксплуатируются, и на этом фоне увеличение тока ОЗЗ с 10 до 14 А или даже с 200 до 280 А ситуации не меняет.
- Нагревающийся при ОЗЗ резистор – более существенный недостаток. Однако определяемые ПУЭ допустимые температуры для другого оборудования, достигающие в аварийных режимах 200–3000С, позволяют спроектировать резистор, нагревающийся только до нижнего из указанных пределов. Установка такого резистора на ОРУ практически снимает вопрос о пожароопасности.
Области эффективного применения различных режимов заземления нейтрали в сетях среднего напряжения попытаемся определить, основываясь на высказанных выше положениях. В зависимости от типа сети и требуемых параметров эти области отражены в таблице. В ее первом столбце – классификация сетей по конфигурации и особенностям их работы, касающихся способа заземления нейтрали.
Сети генераторного напряжения – это в основном шинные мосты со стабильными емкостными токами. При замыкании на землю невозможно провести селективное отключение какого-либо участка, необходимо отключать сам генератор по четкому признаку появления напряжения нулевой последовательности. Кратковременная работа генератора до отключения при малых токах возможна при изолированной нейтрали. При емкостном токе, превышающем 5 А, могут возникать серьезные повреждения изоляции, поэтому представляется целесообразным применение дугогасящего реактора. При этом выполнение шинного моста изначально должно быть таким, чтобы не возникало смещения нейтрали и обеспечивалась точная настройка ДГР.
Сети собственных нужд электрических станций в отличие от сетей генераторного напряжения имеют разветвленную конфигурацию, позволяющую селективно отключать повреждение с ОЗЗ. Поскольку эти сети выполнены кабельными линиями, степень их симметрии достаточная для применения дугогасящего реактора.
При малых емкостных токах возможно применение изолированной нейтрали, однако при этом сеть нуждается в расчетной проверке на возможность возникновения феррорезонансных явлений. При опасности таковых рекомендуется заземление нейтрали через резистор. Длительная работа сети при ОЗЗ представляется малоцелесообразной, поскольку в таких сетях имеется достаточное резервирование.
Селективное отключение поврежденного присоединения релейной защитой может быть надежно выполнено при резистивном заземлении нейтрали.
При больших емкостных токах, если признано рациональным продолжение работы сети при ОЗЗ, наилучшим вариантом является применение ДГР, способствующее (при точной настройке) самоликвидации однофазного замыкания [8]. Селективное отключение релейной защитой ОЗЗ с большим током хорошо реализуется при резистивном заземлении нейтрали.
Распределительные сети с воздушными линиями, как правило, несимметричны. При малых токах, так же как и в предыдущем случае, возможно применение изолированной нейтрали при отсутствии предпосылок для феррорезонансных явлений. Эксплуатационное изменение конфигурации и размеров сети может привести к появлению таких предпосылок. При этом также возможно и превышение границы емкостного тока. Поэтому наилучшим и универсальным решением для таких сетей является резистивное заземление нейтрали. Применение ДГР проблематично из-за существующей несимметрии и большого диапазона изменения емкостного тока. Опыт показывает, что установленные в таких сетях ДГР практически нигде не работают.
В воздушных распределительных сетях, питающих нефтяные и газовые месторождения, существует проблема кратковременных отключений ВЛ, связанная с недостаточно отработанной технологией самозапуска двигателей насосов. Поэтому такие сети вынужденно работают при сохранении замыкания на землю. Применение ДГР целесообразно в подобных случаях лишь с позиций улучшения условий электробезопасности при ОЗЗ, что требует точной компенсации емкостного тока. Дуговых процессов при замыканиях на ВЛ, как правило, не бывает.
Городские, поселковые кабельные сети (без ВЛ) достаточно симметричны для применения ДГР, но в отличие от сетей собственных нужд электрических станций имеют постоянно и значительно изменяющуюся конфигурацию, что требует большого диапазона подстройки. Положение осложняется тем, что питающие подстанции, где устанавливаются ДГР, и распределительные городские сети часто имеют разную подчиненность, в том числе и оперативно-диспетчерскую. Это требует обязательной автоматической широкодиапазонной подстройки ДГР. Поэтому универсальным способом для таких сетей является резистивное заземление нейтрали, о чем свидетельствует обширная мировая практика.
При наличии в поселковых и городских сетях воздушных линий резко обостряется проблема электробезопасности при ОЗЗ, и в соответствии с новыми требованиями ПУЭ (1.7.64**) однофазные замыкания необходимо отключать релейной защитой. Это является дополнительным доводом в пользу резистивного заземления нейтрали.
Сети, питающие передвижные подстанции и механизмы, торфяные разработки, шахты и т.п., однозначно, в соответствии с 1.7.64 ПУЭ, требуют отключения ОЗЗ релейной защитой. С учетом тех преимуществ, которые дает резистивное заземление (гашение колебательных процессов в сети и формирование селективного признака в виде активного тока в поврежденном присоединении), режим заземления нейтрали через резистор представляется здесь единственно целесообразным, особенно при разветвленной сети.
В завершение следует отметить, что ключевой момент в определении режима заземления нейтрали сети – это решение о селективном отключении или длительном сохранении режима однофазного замыкания на землю. При сохранении ОЗЗ можно выбирать среди всех указанных в ПУЭ режимов нейтрали, учитывая высказанные в настоящей работе соображения. Если ОЗЗ должно селективно отключаться релейной защитой, преимущественным решением является заземление нейтрали через резистор.
Выводы
- Выбор того или иного режима заземления нейтрали целесообразен исключительно при необходимости длительной работы сети с однофазным замыканием на землю. Подобная потребность в длительном сохранении такого аварийного состояния сети возникает лишь в случае отсутствия резервирования. При этом эффективное применение дугогасящего реактора возможно только в симметричных сетях с мало изменяющейся конфигурацией. В остальных вариантах предпочтительнее оказывается изолированная нейтраль и иногда – нейтраль, заземленная через резистор.
- При отключении присоединения с однофазным замыканием релейной защитой во всех случаях предпочтительным оказывается резистивное заземление нейтрали. Такое комплексное решение ликвидирует все недостатки, присущие сетям с изолированной и компенсированной нейтралью, и выводит сети среднего напряжения на более высокий уровень надежности и электробезопасности, свойственный сетям напряжением 110 кВ и выше.
Литература
- Целебровский Ю.В. Нормативное обеспечение режима нейтрали в электрических сетях // Режимы заземления нейтрали сетей 3–6–10–35 кВ: Доклады научно-технической конференции. – Новосибирск, 2000. – С. 3–6.
- Шалин А.И., Целебровский Ю.В., Щеглов A.M. Особенности резистивного заземления в городских сетях 10 кВ // Ограничение перенапряжений и режимы заземления нейтрали сетей 6–35 кВ: Труды Второй Всероссийской научно-технической конференции. – Новосибирск, 2002. – С. 63–68.
- Правила устройства электроустановок. Раздел 1. Общие правила. Главы 1.1, 1.2, 1.7, 1.9. Раздел 7. Электрооборудование специальных установок. Главы 7.5, 7.6, 7.10. – 7-е изд. – М.: Изд-во НЦ ЭНАС, 2002. – 184 с.
- Черненко Н.А. Аварийность и замыкания на землю в электрических сетях напряжением 35 и 110 кВ // Режимы заземления нейтрали сетей 3–6–10–35 кВ: Доклады научно-технической конференции. – Новосибирск, 2000. – С. 83–88.
- Гордон Г.Ю., Вайнштейн Л.И. Электротравматизм и его предупреждение. – М.: Энергоатомиздат, 1986. – 256 с.
- Правила технической эксплуатации электрических станций и сетей Российской Федерации / Министерство топлива и энергетики РФ, РАО «ЕЭС России»: РД 34.20.501–95. – 15-е изд., перераб. и доп. – М.: СПО ОРГРЭС, 1996. – 160 с.
- Правила технической эксплуатации электроустановок потребителей/ Госэнергонадзор Минэнерго России. – М.: ЗАО «Энергосервис», 2003. – 392 с.
- Обабков В.К. Многокритериальность показателя эффективности функционирования сетей 6–35 кВ и проблема оптимизации режимов заземления нейтрали // Режимы заземления нейтрали сетей 3–6–10–35 кВ: Доклады научно-технической конференции. – Новосибирск, 2000. – С. 33–41.
В статье использованы материалы с сайта журнала «Новости Электротехники».