Что такое реактивное емкостное сопротивление и как оно определяется
Перейти к содержимому

Что такое реактивное емкостное сопротивление и как оно определяется

  • автор:

Емкостное и индуктивное сопротивление в цепи переменного тока

Емкостное и индуктивное сопротивление — это два типа реактивного сопротивления, которые возникают в цепи переменного тока из-за наличия конденсаторов и катушек индуктивности. Они зависят от частоты переменного тока и от параметров этих элементов.

Если мы включим конденсатор в цепь постоянного тока, то обнаружим, что он оказывает бесконечно большое сопротивление, поскольку постоянный ток просто не может пройти через диэлектрик между обкладками, так как диэлектрик по определению не проводит постоянный электрический ток.

Конденсатор разрывает цепь постоянного тока. Но если тот же конденсатор включить теперь в цепь переменного тока, то окажется, что ее конденсатор будто бы и не разрывает полностью, он просто попеременно заряжается и разряжается, то есть электрический заряд движется, и ток во внешней цепи поддерживается.

Опираясь на теорию Максвелла, в этом случае можно сказать, что переменный ток проводимости внутри конденсатора все же замыкается, только в данном случае — током смещения. Значит конденсатор в цепи переменного тока выступает неким сопротивлением конечной величины. Такое сопротивление называется емкостным.

Емкостное и индуктивное сопротивление в цепи переменного тока

Практика давно показала, что величина переменного тока, текущего через провод, зависит от формы этого провода и от магнитных свойств среды вокруг него. При прямом проводе ток будет наибольшим, а если этот же провод свернуть в катушку с большим количеством витков, то величина тока окажется меньше.

А если в ту же катушку еще и ввести ферромагнитный сердечник, то ток еще сильнее уменьшится. Следовательно проводник оказывает переменному току не только омическое (активное) сопротивление, но еще и некое дополнительное сопротивление, зависящее от индуктивности проводника. Данное сопротивление называется индуктивным.

Его физический смысл состоит в том, что изменяющийся ток в проводнике, обладающем некой индуктивностью, инициирует в этом проводнике ЭДС самоиндукции, стремящуюся препятствовать изменениям тока, то есть стремящуюся уменьшить ток. Это равносильно увеличению сопротивления проводника.

Емкостное сопротивление в цепи переменного тока

Емкостное сопротивление в цепи переменного тока

Для начала поговорим более подробно о емкостном сопротивлении. Допустим, что конденсатор емкостью С подключен к источнику синусоидального переменного тока, тогда ЭДС этого источника будет описываться следующей формулой:

ЭДС источника

Падением напряжения на соединительных проводах пренебрежем, так как оно обычно очень мало, а при необходимости его можно будет рассмотреть отдельно. Примем сейчас, что напряжение на обкладках конденсатора равно напряжению источника переменного тока. Тогда:

Напряжение на обкладках конденсатора

В любой момент времени заряд на конденсаторе зависит от его емкости и от напряжения между его обкладками. Тогда для данного известного источника, о котором говорилось выше, получим выражение для нахождения заряда на обкладках конденсатора через напряжение источника:

Заряд на обкладках конденсатора

Пусть за бесконечно малое время dt заряд на конденсаторе изменяется на величину dq, тогда по проводам от источника к конденсатору потечет ток I, равный:

Ток

Амплитудное значение тока окажется равно:

Амплитудное значение тока

Тогда окончательное выражение для тока будет иметь вид:

Ток

Перепишем формулу для амплитуды тока в следующем виде:

Амплитудное значение тока

Данное соотношение есть закон Ома, где величина обратная произведению угловой частоты на емкость играет роль сопротивления, и по сути являет собой выражение для нахождения емкостного сопротивления конденсатора в цепи синусоидального переменного тока:

Емкостное сопротивление конденсатора

Значит емкостное сопротивление обратно пропорционально угловой частоте тока и емкости конденсатора. Легко понять и физический смысл данной зависимости.

Чем больше емкость конденсатора в цепи переменного тока и чем чаще изменяется направление тока в этой цепи, тем в конце концов больший суммарный заряд проходит за единицу времени через поперечное сечение проводов, соединяющих конденсатор с источником переменного тока. Значит ток пропорционален произведению емкости и угловой частоты.

Для примера выполним расчет емкостного сопротивления конденсатора электроемкостью 10 мкф для цепи синусоидального переменного тока с частотой 50 Гц:

Расчет емкостного сопротивления конденсатора

Если бы частота была 5000 Гц, то тот же самый конденсатор представлял бы собой сопротивление около 3 Ом.

Из приведенных выше формул ясно, что ток и напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах. Фаза тока опережает фазу напряжения на пи/2 (90 градусов). А значит максимум тока во времени существует всегда на четверть периода раньше, чем максимум напряжения. Таким образом на емкостном сопротивлении ток опережает напряжение на четверть периода по времени или на 90 градусов по фазе.

Напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах

Давайте поясним физический смысл данного явления. В самый первый момент времени конденсатор полностью разряжен, поэтому самое малое приложенное к нему напряжение уже перемещает заряды на пластинах конденсатора, создавая ток.

По мере того как конденсатор заряжается, напряжение на его обкладках увеличивается, оно препятствует дальнейшему притоку заряда, поэтому ток в цепи уменьшается невзирая на дальнейший рост прикладываемого к обкладкам напряжения.

Значит, если в начальный момент времени ток был максимальным, то когда напряжение достигнет своего максимума через четверть периода, ток прекратится вовсе.

В начале периода ток максимален, а напряжение минимально и начинает нарастать, но через четверть периода напряжение достигает максимума, но ток к этому моменту уже упал до нуля. Вот и получается опережение током напряжения на четверть периода.

Индуктивное сопротивление в цепи переменного тока

Индуктивное сопротивление в цепи переменного тока

Теперь вернемся к индуктивному сопротивлению. Допустим, что через катушку, обладающую индуктивностью, течет переменный синусоидальный ток. Его можно выразить так:

Ток

Ток обусловлен приложенным к катушке переменным напряжением. Значит на катушке возникнет ЭДС самоиндукции, которая выражается следующим образом:

ЭДС самоиндукции

Снова пренебрежем падением напряжения на проводах, соединяющих источник ЭДС с катушкой. Их омическое сопротивление очень мало.

Пусть приложенное к катушке переменное напряжение в каждый момент времени полностью уравновешивается возникающей ЭДС самоиндукции, равной ему по величине, но противоположной по направлению:

ЭДС

Тогда имеем право записать:

ЭДС

Поскольку амплитуда приложенного к катушке напряжения равна:

Амплитуда приложенного к катушке напряжения

ЭДС

Выразим максимальный ток следующим образом:

Ток

Это выражение по сути является законом Ома. Величина равная произведению индуктивности на угловую частоту играет здесь роль сопротивления, и представляет собой не что иное, как индуктивное сопротивление катушки индуктивности:

Индуктивное сопротивление катушки индуктивности

Так, индуктивное сопротивление пропорционально индуктивности катушки и угловой частоте переменного тока, через данную катушку пропускаемого.

Это объясняется тем, что индуктивное сопротивление обусловлено влиянием ЭДС самоиндукции на напряжение источника, — ЭДС самоиндукции стремится уменьшить ток, а значит сносит в цепь сопротивление. Величина ЭДС самоиндукции, как известно, пропорциональна индуктивности катушки и скорости изменения тока через нее.

Для примера рассчитаем индуктивное сопротивление катушки с индуктивностью 1 Гн, которая включена в цепь с частотой тока 50 Гц:

Расчет индуктивного сопротивления

Если бы частота бала 5000 Гц, то сопротивление этой же катушки оказалось бы равно приблизительно 31400 Ом. Напомним, что омическое сопротивление провода катушки составляет обычно единицы Ом.

Изменения тока через катушку и напряжения на ней, происходят в разных фазах

Из приведенных выше формул очевидно, что изменения тока через катушку и напряжения на ней, происходят в разных фазах, причем фаза тока всегда меньше чем фаза напряжения на пи/2. Следовательно максимум тока наступает на четверть периода позже наступления максимума напряжения.

На индуктивном сопротивлении ток отстает от напряжения на 90 градусов из-за тормозящего действия ЭДС самоиндукции, которая препятствует изменению тока (и нарастанию, и убыванию), вот почему максимум тока наблюдается в цепи с катушкой позднее максимума напряжения.

Совместное действие катушки и конденсатора

Если включить в цепь переменного тока последовательно катушку с конденсатором, то напряжение на катушке будет опережать напряжение на конденсаторе по времени на половину периода, то есть на 180 градусов по фазе.

Емкостное и индуктивное сопротивление называются реактивными сопротивлениями. На реактивном сопротивлении энергия не расходуется как на активном. Энергия накапливаемая в конденсаторе периодически возвращается обратно к источнику, когда электрическое поле в конденсаторе исчезает.

Так же и с катушкой: пока магнитное поле катушки создается током, энергия в ней на протяжении четверти периода накапливается, а в следующую четверть периода возвращается к источнику. В данной статье речь шла о синусоидальном переменном токе, для которого данные положения выполняются строго.

В цепях синусоидального переменного тока катушки индуктивности с сердечниками, называемые дросселями, традиционно используются для ограничения тока. Их преимущество перед реостатами в том, что энергия не рассеивается в огромном количестве в форме тепла.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Реактивное сопротивление

Реактивное сопротивление — величина типа сопротивления, отношение между током и напряжением на реактивной (ёмкостной, индуктивной) нагрузке, то есть не связанное с потреблением электрической энергии. Явление реактивного сопротивления характерно только для цепей переменного тока.

Обозначение — X.

Единица измерения — ом (Ом, Ω).

Реактивное сопротивление выражается через напряжение U, силу тока I и сдвиг фазы между током и напряжением φ следующим образом:

Реактивное сопротивление в отличие от активного сопротивления может иметь как положительный знак, так и отрицательный. Знак соответствует знаку сдвига фазы между током и напряжением — он положителен при отставании тока от напряжения и отрицателен при опережении.

Чисто реактивное сопротивление (R = 0) обладает сдвигом фазы ± π 2 2> .

Реактивное сопротивление катушки с индуктивностью L называется индуктивным и выражается следующей формулой:

X L = ω L = 2 π f L ;

Реактивное сопротивление конденсатора с ёмкостью C называется ёмкостным и выражается формулой:

Словарь специальных терминов

Емкостное сопротивление, емкость – реактивное сопротивление, которое представляет данная емкость для переменного тока.

Емкостное сопротивление (ед. измерения – Ом) – абсолютное значение реактивного сопротивления, обусловленного емкостью цепи, равное величине, обратной произведению этой емкости и угловой частоты.

Исходя из данного определения видно, что емкостное сопротивление обратнопропорционально частоте тока и емкости конденсатора: чем больше их величины, тем меньше емкостное сопротивление.

Емкостное сопротивление зависит от емкости конденсатора и частоты, причем с увеличением частоты емкостное сопротивление в отличие от индуктивного уменьшается.

Емкостное сопротивление, так же как и индуктивное, является реактивным, так как на нем не происходит потери энергии.
Емкостное сопротивление, учитывающее реакцию емкости, обратно пропорционально угловой частоте: чем выше частота, тем меньше емкостное сопротивление. Для постоянного тока, частоту которого можно считать равной нулю, емкостное сопротивление равно бесконечности ─ конденсатор не пропускает постоянного тока.
Емкостное сопротивление между проводами, связывающими преобразователь расхода с измерительным прибором, ограничивает длину I проводов тем больше, чем меньше удельная проводимость жидкости. Для точного измерения ЭДС преобразователя надо, чтобы сопротивление нагрузки Zn было во много (100 ─ 500) раз больше сопротивления Z преобразователя.
Емкостное сопротивление обратно пропорционально емкости и частоте; при постоянном напряжении оно равно бесконечности.

Основные понятия сопротивления и реактивного сопротивления

В цепи с сопротивлением, индуктивностью и емкостью (цепь RLC) блокирующее воздействие на переменный ток называется импедансом; сопротивление обычно обозначается как Z, единица измерения Ом; полное сопротивление состоит из сопротивления, индуктивного сопротивления и емкостного сопротивления, но не трех. Для конкретной цепи полное сопротивление не является постоянным, а изменяется в зависимости от частоты; в последовательной цепи резисторов, катушек индуктивности и конденсаторов сопротивление цепи обычно больше, чем сопротивление.

Блокирующее воздействие конденсаторов и катушек индуктивности на переменный ток в цепи вместе называется реактивным сопротивлением, выраженным в X, в омах. Реактивное сопротивление изменяется при изменении частоты цепи переменного тока, вызывая изменение фазы тока и напряжения в цепи.

3. Соотношение между сопротивлением, реактивным сопротивлением, емкостным сопротивлением и индуктивным сопротивлением

Сопротивление, сумма сопротивления и реактивного сопротивления, математически выражается как:

Z — полное сопротивление в омах

R сопротивление в омах

X — реактивное сопротивление в омах

j — мнимая единица

Когда X> 0, это называется индуктивным сопротивлением

Когда X = 0, реактивное сопротивление равно 0

Для идеального чисто индуктивного или емкостного компонента реактивного сопротивления с нулевым сопротивлением сила сопротивления равна величине реактивного сопротивления.

Общее реактивное сопротивление типичной цепи равно: X = XL? Xc

Где XL — индуктивное сопротивление цепи, а Xc — емкостное сопротивление цепи.

3.1 Смысл сопротивления

Индуктивное реактивное сопротивление (XL) обычно обусловлено наличием в цепи индуктивного контура (такого как катушка), и результирующее электромагнитное поле создает соответствующую электрическую силу, которая блокирует поток тока. Чем больше изменение тока, то есть, чем больше частота цепи, тем больше индуктивное сопротивление; когда частота становится равной 0, то есть когда она становится постоянным током, индуктивное сопротивление также становится равным нулю. Индуктивное реактивное сопротивление вызывает разность фаз между током и напряжением. Индуктивное сопротивление можно рассчитать по следующей формуле:

XL = ωL = 2 × π × f × L

XL — индуктивное сопротивление, единица измерения Ом, Ом

ω — угловая частота в радианах в секунду, рад / с

f — частота в герцах, Гц

3.2 емкостное сопротивление

Концепция емкостного реактивного сопротивления (Xc) отражает характеристику того, что переменный ток может проходить через конденсатор. Чем выше частота переменного тока, тем меньше емкостное сопротивление, то есть меньше блокирующий эффект конденсатора. Емкостное сопротивление также вызывает разность фаз между током и напряжением на конденсаторе. Емкостное сопротивление можно рассчитать по следующей формуле:

Xc = 1 / (ω × C) = 1 / (2 × π × f × C)

Xc — емкостное сопротивление в Ом, Ом

ω — угловая частота в радианах в секунду, рад / с

f — частота в герцах, Гц

C — емкость в Фаразе F 1 раз

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *