Электромагнитные волны распространяются в вакууме
Перейти к содержимому

Электромагнитные волны распространяются в вакууме

  • автор:

Как электромагнитная волна распространяется в вакууме?

Для существования волны необходима сплошная среда, исходя из самого определения. Вероятно это результат проявления корпускулярных свойств волны, но как это согласуется с колебаниями в электрическом и магнитных полях? Ведь и то и другое результат взаимодействия частиц, которых в вакууме нет. Хотелось бы услышать как можно более развернутый ответ.

Лучший ответ

Существование электромагнитных волн было предсказано М. Фарадеем еще в 1832 году. Дж. Максвелл в 1865 году в результате анализа предложенной им системы уравнений (см. Максвелла уравнения), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников — зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1,2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

НеизвестноПрофи (834) 8 лет назад

«поле без источников имеет вид волн»
Снова пришли к волне, для распространения которой нужна среда. А если представить электромагнитное поле как совокупность частиц, то со временем они должны рассеяться.

III III Мастер (1264) смотри теорию Леонова Владимира Семеновича, он вводит среду из квантов, которые в свою очередь состоят из двух электрических и двух магнитных зарядов (правда, что такое заряд как субстанция? вобщем, вопросы будут всегда).

Ильяс ХабибуллинЗнаток (331) 7 лет назад
Ну да, а то как свет Солнца дошел бы до нас
AnimЗнаток (283) 4 года назад

после таких ответов, вопросов только больше стало. не знаю на сколько я прав. но для себя в качестве реду представляю магнитное поле, а уже в этом поле колеблется волна. а вот из чего это поле, пока не понимаю

Остальные ответы
Пространство все заполнено электромагнитным полем, волна возмущение в нем.

Злектромагнтная волна это превращение электрической энергии в магнитную и наоборот с частотой колебательного контура и если этот контур открытый имеет антену то энегия эта распространяется со скоростью света по всему пространству от антены

. как? Бесконечностью.

ща мы до ЭФИРА дотрындимся нашим физикам похрену как главное распространяется и математически поддается описанию а как дело 10

III IIIМастер (1264) 7 лет назад
значит это не физики, а математики
вычислители, калькуляторы )

«Для существования волны необходима сплошная среда»

А вакуум это сплошной четверг?

«Как это согласуется с колебаниями в электрическом и магнитных полях? «

Никаких магнитных и электрических полей не существует. Это способ описания электромагнитизма

НеизвестноПрофи (834) 8 лет назад

Вакуум это пространство свободное от вещества. Соответственно никакой среды в физическом смысле там нет.

Сергей Бадлак Профи (708) Вакуум — это низшее энергетическое состояние поля.

Ты бы уточнил то самое определение, из которого исходишь. А то ведь самый популярный источник даёт такое определение волны: https://ru.wikipedia.org/wiki/Волна волна — изменение некоторой совокупности физических величин (характеристик некоторого физического поля или материальной среды), которое способно перемещаться, удаляясь от места их возникновения, или колебаться внутри ограниченных областей пространства. Физическая энциклопедия (в 5 томах) / Под редакцией акад. А. М. Прохорова. — Москва: Советская Энциклопедия, 1988. Как видишь, уже четверть века в определении понятия волна нет необходимости в существовании некой сплошной среды.

Собственно, так и распространяется. Электрическое поле превращается в магнитное. Магнитное — в электрическое. Хочешь, можешь проникнуться стилем Карена и воспринимать волну как существование электромагнитного поля в своём извечном дуализме преобразования одного в другое. А не хочешь — так просто смирись: существуют и всё тут. Никаких иных проявлений «среды», в которой распространяются эти волны, найдено не было. Хотя и искали.

НеизвестноПрофи (834) 8 лет назад

Все общепринятые определения волны напрямую или коссвенно подразумевают наличие среды. В том числе и приведенное Вами: «(характеристик некоторого физического поля или материальной среды) «
Т. е. единого объяснения принципа распространения ЭМВ на сегодняшний день не существует?

Виталий Данилович Мудрец (12846) Вот некое поле — это электромагнитное поле. Вполне материальный объект. Не среда. Четверг. Если хочешь, можешь почитать о физическом вакууме, его представляй средой. Но что ты называешь «принципом» — мне понять сложно. Уравнения написаны, уравнения работают, распространение предсказывают правильно, техника на основе этих уравнений уже прочно вошла в повседневную жизнь. Так что наверное всё-таки есть «принцип».

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

14. Электромагнитная волна
По нашей гипотезе электромагнитные волны это волны, формирующиеся электронными и позитронными зарядами, внутри которых расположены фотоны, которые представляют собой энергию заряда и кванты цвета.
Полуволны образованы одноимёнными зарядами.
Длина электромагнитной волны определяется количеством электронов и позитронов в одном периоде колебаний.
Вращение фотона как колеса определяет его длину волны, которая определяет тот или иной цвет электромагнитного спектра.
Первородные фотоны это фотоны, которые рождаются внутри электронов и позитронов.
Фотоны, как самостоятельная частица, существует как вторичные, излучённые или прошедшие процесс аннигиляции, и которые не имеют способности организоваться в виде электромагнитных волн, и не имеет способности генерировать цвет, кроме того, который он генерировал во время излучения или аннигиляции.
Электронные и позитронные полуволны в электромагнитной волне имеют противоположные векторы движения в пространстве. Но распространяются последовательно.
Электромагнитная волна распространяется в эфире посредством передачи заряда электронов и позитронов от одних гравитонов соседним.
Таким образом, практически покоящиеся в эфире гравитоны, проходя полный цикл возбуждения (циклы электронов и циклы позитронов), передают энергию электромагнитной волны в пространстве.
Электромагнитная волна, достигая гравитонов, находящихся вокруг приемной антенны, передаёт ей свои заряды, генерируя в антенне электронно-позитронную ЭДС.
Электроны с позитронами электромагнитных волн, излучаемые Солнцем, сталкиваясь с атомами и молекулами газов атмосферы, с земной поверхностью, с различными объектами, посредством тормозного излучения, рождают хаотично двигающиеся цветные фотоны, которые, попадая в механизм зрения человека, рисуют нам наш разноцветный мир.

олегУченик (113) 4 года назад

Спасибо) «передача заряда от одних гравитонов другим»- теория или уже доказано? Пол века прожил и никто не мог дать ответ) Даже если это теория, теперь я спокоен)

Как возникают электромагнитные волны

Но все это классическая макроскопическая электродинамика с элементами СТО, а есть что почитать в КЭД про тоже самое?

Всего голосов 1: ↑1 и ↓0 +1
Ответить Добавить в закладки Ещё
Показать предыдущий комментарий

Photons and Atoms: Introduction to Quantum Electrodynamics Claude Cohen-Tannoudji, Jacques Dupont-Roc, Gilbert Grynberg и Introduction to Quantum Optics From the Semiclassical Approach to Quantized Light а еще гугл будет предлагать книги по теме — там уж выбирать, с упором в оптику ли или в теорию рассеяния. По мне, самый удобный вариант — находить лекции различных университетов (буду дома — скину пример)

Комментарий пока не оценивали 0
Ответить Добавить в закладки Ещё
Показать предыдущий комментарий

Вот здесь лекции — наша тема начинается с 7-8. Вообще, рекомендую всем поизучать их сайт — есть много интересных статей и визуализаций биофизических процессов

Всего голосов 3: ↑3 и ↓0 +3
Ответить Добавить в закладки Ещё
Показать предыдущий комментарий
Всего голосов 1: ↑1 и ↓0 +1
Ответить Добавить в закладки Ещё

В уже который раз хотелось бы попросить объяснить «на пальцах» возникновение и распространие в вакууме ЭМ волны.
Для обывателя, коим я и являюсь, само понятие волны неотрывно связано со средой распространения. Вода, воздух, продольные и поперечные — это все понятно и просто.
Но с ЭМ волнами — нет. Особенно в случае с гипотетическим полным вакуумом, без наличия каких-либо полей.

Всего голосов 1: ↑1 и ↓0 +1
Ответить Добавить в закладки Ещё
Показать предыдущий комментарий

Электромагнитные волны фактически тоже распространяются в среде — в электромагнитном поле. На ровной поверхности воды при воздействии на нее может возникнуть возмущение, то есть волна, так же и в поле нулевой напряженности может возникнуть ненулевое возмущение, которое распространится дальше. В воде везде существуют частицы воды, а в пространстве везде существует электромагнитное поле, это свойство самого пространства.

Только сам механизм распространения немного другой, не одни частицы толкают другие, а напряженность одного поля превращается в напряженность другого. Электрон в атоме перескочил с одного уровня на другой, в пространстве возникло изменение напряженности электрического поля. Далее напряженность электрического поля затухает до нуля, и ее изменение увеличивает напряженность магнитного в соседней точке. Это магнитное поле затухает до нуля, и его изменение порождает электрическое в следующей точке. Так волна и распространяется.

Гигантское усиление электромагнитных волн обнаружено внутри малых диэлектрических частиц

Астрономы впервые напрямую измерили гигантские электромагнитные поля, возникающие в диэлектрических частицах с большим коэффициентом преломления при рассеянии электромагнитных волн. Исследователи из Университета ИТМО, МГУ и Австралийского национального университета представили результаты своей работы в журнале Scientific Reports.

Исследователи обнаружили, что диэлектрические наночастицы способны резонансно рассеивать свет. При таком рассеянии наночастица действует как воронка, которая собирает падающее излучение с большой области и концентрирует его в малом объеме. Ученые впервые напрямую экспериментально измерили это гигантское резонансное поле, возбуждаемое внутри субволновой диэлектрической наночастицы при рассеянии плоской электромагнитной волны, и количественно объяснить наблюдаемый эффект соответствующими расчетами. «Теоретически этот эффект был хорошо известен: при таком рассеянии частица действует как воронка, собирающая излучение из окружающего ее пространства и концентрирующая его внутри частицы. Однако на пути его практической реализации возникали значительные трудности. Первыми кандидатами на роль таких «концентраторов поля» были металлические наночастицы, но они не оправдали надежд. Дело в том, что в наиболее интересной для приложений области оптических частот многие металлы обладают большим электрическим сопротивлением. Это приводит к значительным потерям энергии, которая тратится на бесполезное (а зачастую и вредное) нагревание наночастицы, а не на увеличение в ней амплитуды электромагнитного поля. В таком случае естественно было бы обратиться к диэлектрическим частицам. Но и здесь все обстоит не так просто», — рассказал ведущий автор статьи Михаил Трибельский.

В вакууме электромагнитные волны распространяются максимально быстро, со скоростью света. В веществе их скорость зависит от коэффициента преломления света этим веществом: чем больше коэффициент, тем меньше скорость. Считалось, что если электромагнитная волна падает на частицу с большим коэффициентом преломления, размер которой мал по сравнению с длиной волны излучения, то электромагнитное поле внутрь такой частицы почти не проникает. Но оказалось, что при определенных частотах падающего излучения ситуация прямо противоположная: поле не просто проникает внутрь частицы, а происходит его гигантская концентрация. Этот эффект аналогичен тому, как малыми, но сделанными в нужный момент толчками можно очень сильно раскачать качели.

«Главный результат нашей работы в том, что мы впервые экспериментально доказали возможность возбуждения таких полей, осуществили прямые экспериментальные измерения этого гигантского резонансного поля, возбуждаемого в субволновой частице, и количественно объяснили этот эффект соответствующими теоретическими расчетами», — пояснил Трибельский. Трудность таких измерений на оптических частотах состоит в том, что надо было измерить поле внутри наночастицы, да еще с пространственным разрешением порядка нанометра. Ее удалось обойти за счет того, что задача о рассеянии света наночастицей была промоделирована эквивалентной задачей по рассеянию радиоволн частицей сантиметрового размера. Для того чтобы иметь возможность в процессе измерений перемещать сенсор внутри такой частицы, использовался жидкий диэлектрик — обычная дистиллированная вода, выдерживаемая при определенной температуре, налитая в прозрачный для радиоволн контейнер.

Направление, к которому принадлежит работа ученых, лежит на самом переднем крае современных исследований по субволновой оптике (оптике объектов с масштабами меньшими длины волны падающего излучения). Интерес к этим явлениям объясняется их широким применением в медицине (диагностика и лечение различных заболеваний, включая онкологические, целевая доставка лекарственных препаратов и прочее), биологии (различные сенсоры и маркеры), телекоммуникациях (наноантенны), системах записи и хранения информации и в других областях. Явление также может быть использовано при создании принципиально новых оптических компьютеров, где вместо электрических импульсов информация переносится световыми пакетами. Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@indicator.ru.

Как возникают электромагнитные волны

Bremsstrahlung («тормозное излучение») — ударная волна света, которая генерируется, когда заряженные частицы «застревают» в твердом теле (классический процесс генерации излучения в рентгеновских вакуумных трубках).

Для многих вполне естественно ассоциировать электрическое и магнитное поля с векторами и силовыми линиями. Но как этими математическими объектами описать волны? Когда они возникают? Ответы на эти вопросы можно получить с помощью школьных формул с щепоткой специальной теории относительности.

По старой традиции, начинаем плясать от печки. Пусть имеются две заряженные параллельные пластины. Электрическое поле между ними равномерно, и равно нулю снаружи (пренебрегаем краевыми эффектами). Также мы сажаем на систему неподвижную гауссову поверхность — это абстрактная рамка, через которую вычисляется поток векторного поля. Каково электрическое поле нашего конденсатора в системе отсчета, где он находится в движении?

Начнем со случая, где движение происходит в направлении, параллельном пластинам. Они начинают претерпевать лоренцево сокращение, при этом расстояние между ними не меняется, и общий заряд на каждой пластине сохраняется. Далее предполагаем, что читатель провел достаточное количество бессонных ночей разбираясь с парадоксами специальной теории относительности (Чтобы освежевать память, предлагаю просмотреть ламповый советский видеоролик). Таким образом, рамка фиксирует что заряд на единицу площади увеличивается в , а поле также возрастает на этот Лоренц-фактор.

Разберем детальней. Гауссова рамка оседлала положительно-заряженную пластину, причем одна грань снаружи, а другая — внутри области ненулевого электрического поля. Применяя закон Гаусса можно показать, что величина электрического поля между пластинами равна

где штрих обозначает величину, измеренную в рамке в которой пластины движутся, а сигма — поверхностная плотность заряда пластины. Поскольку пластины сокращаются по длине, поверхностная плотность заряда отличается от оной для неподвижных пластин вот так

Поглядывая на первую формулу заключаем, что величина поля тоже претерпевает действие лоренцева множителя. То есть, электрическое поле в загрунтованной рамке сильнее, чем в той, что будет двигаться вместе с пластинами.

А как будет выглядеть ситуация, если движение происходит в направлении, перпендикулярном пластинам, то есть параллельно полю Е? В этом случае сокращение длины не влияет на размер пластин, хотя и уменьшает расстояние между ними. Но расстояние между парой близко расположенных, равномерно заряженных пластин не влияет на напряженность поля между ними.

Тогда рассмотрим самый общий случай, когда движение происходит в некотором диагональном направлении относительно поля. В этом случае мы можем рассматривать поле как суперпозицию поля параллельного и поля перпендикулярного движению. Каждое из них как бы порождается своим набором соответствующим образом ориентированных пластин. Затем одна пара пластин сжимается по длине, как описано выше, и вносит вклад в общее поле:

Важно помнить, что такого рода телодвижения применимы только в том случае, если источник поля с точки зрения незакрепленной рамки будет находиться в состоянии покоя. Поскольку всегда существует некоторая система отсчета, в которой любой конкретный источник находится в состоянии покоя, этих уравнений достаточно для решения широкого круга задач. Заметим, что закон преобразования для вектора электрического поля сильно отличается от закона преобразования для обычных векторов перемещения (которые сжимаются в направлении вдоль движения и неизменны в перпендикулярных направлениях).

Равномерное движение точечного заряда

Следующим шагом будет рассмотрение поля единичного точечного заряда, движущегося с постоянной скоростью. В своей системе покоя электрическое поле положительного точечного заряда имеет одинаковую силу во всех направлениях. Как выглядит это поле в какой-то другой системе отсчета? Применяя наш подход к неоднородному электрическому полю, мы должны быть очень осторожны, так как придется следить не только за величиной поля, но и за тем, где оно имеет эту величину. Поэтому представим себе, что наш точечный заряд окружен сферической оболочкой. В нашей системе отсчета и частица, и ее сфера движутся.

Таким образом, сокращение длины говорит о том, что сфера сплющивается в сфероид, как показано в поперечном сечении на рисунке:

(a) Точечный заряд в состоянии покоя, окруженный воображаемой сферой. Электрическое поле в любой точке сферы направлено прямо в сторону от заряда. (b) В системе отсчета, где заряд и сфера движутся вправо, сфера сжимается по длине, но вертикальная составляющая поля становится сильнее. Эти два эффекта объединяются, чтобы заставить поле снова указывать прямо от текущего местоположения заряда.

Теперь рассмотрим величину электрического поля в некой точке поверхности сферы. Ее координата имеет х и у компоненты. Вектор поля идущий от заряда через эту некую точку также вполне представим как пара компонент, причем справедливо соотношение:

В нашей системе отсчета, где заряд движется, длина x в направлении движения уменьшается:

(в то время как y-составляющая смещения одинакова в обоих случаях). Однако, согласно результатам предыдущего раздела, y-составляющая поля усиливается аналогичным множителем:

(в то время как х-компонента поля одинакова на обеих картинках). Таким образом, соотношение компонентов поля

Другими словами, поле в фиксированной рамке указывает прямо на заряд, как и в движущейся. Накидаем схематически электрическое поле точечного заряда, движущегося с постоянной скоростью:

Электрическое поле точечного заряда движущегося вправо с постоянной скоростью, равной 4/5 скорости света.

Чем быстрее движется заряд, тем заметнее становится усиление перпендикулярной составляющей поля. Если скорость заряда намного меньше скорости света, то это усиление часто пренебрежимо мало.

Поле ускоряющегося заряда

Итак, когда точечный заряд движется с постоянной скоростью, его электрическое поле всегда направлено прямо от него, радиально. В свете специальной теории относительности это может показаться странным, поскольку никакая информация не может перемещаться быстрее скорости света. Почему же тогда поле в каком-то отдаленном месте указывает прямо на то место, где заряд находится сейчас, а не на то, где он был некоторое время назад? Означает ли это, что информация о движении заряда мгновенно распространяется по всей Вселенной? Ну, не обязательно.

Видите ли, частица уже некоторое время движется с постоянной скоростью по предсказуемому курсу. Поэтому, если вы находитесь в далеком месте, вы могли бы организоваться так, чтобы частица посылала вам информацию о своем положении и скорости, а вы, получив эту информацию, экстраполировали бы движение чтобы выяснить, где частица должна находиться. Однако ваша схема предсказания положения частицы будет разрушена, если частица претерпит некоторое ускорение между тем моментом, когда она послала вам информацию, и настоящим.

Вы могли бы подумать, что частица продолжает двигаться с постоянной скоростью, и поле в вашем местоположении указывало бы в сторону того места, где частица была бы сейчас, если бы не было факта ускорения. Но на самом деле частицы там нет.

Например, предположим, что частица сначала движется вправо со скоростью 1/4 скорости света, а затем внезапно отскакивает от стены и с той же скоростью летит обратно. Через одну секунду новость об отскоке не могла пройти дальше одной световой секунды (300 000 км). Если вы находитесь ближе, чем на одну световую секунду к месту отскока, то вы уже получили известие, и поле в вашем местоположении указывает туда, где сейчас находится частица. Но если вы находитесь дальше, чем на одну световую секунду от места отскока, то новость еще не дошла до вас, и поле в вашем местоположении указывает туда, где частица была бы сейчас, если бы не было отскока.

Положительно заряженная частица, первоначально движущаяся вправо со скоростью 1/4 скорости света, отскакивает от стены в точке В. Частица сейчас находится в точке А, но если бы не было отскока, она была бы сейчас в точке С. Окружность (фактически поперечное сечение сферы) охватывает область пространства, в которую уже поступила новость об отскоке; внутри этой окружности (как в точке D) электрическое поле указывает прямо на точку A. Вне окружности (как в точке E) новость еще не поступила, поэтому поле указывает прямо на точку C. Со временем круг расширяется наружу со скоростью света, а точки А и С удаляются от точки В со скоростью 1/4 скорости света.

Из специальной теории относительности мы знаем, что никакая информация не может перемещаться быстрее скорости света. Предположим наилучший возможный случай: информация распространяется точно со скоростью света, но не быстрее. Этого предположения вместе с законом Гаусса достаточно, чтобы определить электрическое поле повсюду вокруг ускоренного заряда. Полная карта электрического поля ускоренного заряда оказывается довольно сложной. Вместо того чтобы представлять поле в виде пучка стрелок, гораздо удобнее использовать более абстрактное представление в виде линий поля. Силовые линии — это непрерывные линии в пространстве, идущие параллельно направлению электрического поля. Таким образом, рисунок силовых линий в некой области немедленно сообщает нам направление электрического поля, хоть определить его величину и не так просто.

Так будет выглядеть карта полевых линий для нашей ситуации

Линии поля через серую сферическую оболочку опускаем, так как эта область как раз в разгаре получения новостей об ускорении частицы. Чтобы определять направление поля здесь, представьте, что гауссовская рамка изогнута (на рисунке обозначена пунктирной линией, которая оседлает серую оболочку. Эта поверхность должна быть симметричной относительно линии, по которой движется частица; если смотреть вдоль этой линии, рамка будет круглой).

Гауссова поверхность не содержит электрического заряда, поэтому закон Гаусса говорит нам, что полный поток E через нее должен быть равен нулю. Теперь рассмотрим поток, проходящий через различные части поверхности. На внешней (правой) части есть положительный поток, в то время как на внутренней (левой) части есть отрицательный поток. Но эти два вклада в поток не отменяют друг друга, так как поле значительно сильнее снаружи, чем внутри. Это происходит потому, что поле снаружи — это поле точечного заряда, расположенного в точке С, в то время как поле внутри — это поле точечного заряда, расположенного в точке А, и С значительно ближе, чем А. Таким образом, общий поток через внутреннюю и внешнюю части поверхности является положительным. Чтобы отменить этот положительный поток, остальные края рамки должны пропускать отрицательный поток.

Таким образом, электрическое поле внутри серой оболочки должно иметь ненулевую составляющую вдоль оболочки, по направлению к центру гауссовой поверхности. Будем называть эту составляющую поперечным полем, поскольку она указывает в поперечном (то есть перпендикулярном) чисто радиальном направлении поля с обеих сторон. Чтобы быть более точными относительно направления поля внутри серой оболочки, рассмотрим модифицированную гауссову поверхность

Ужимаем внешнюю поверхность ef до тех пор, пока она не уменьшится до того же угла относительно точки С, что и внутренняя поверхность ab, если смотреть с точки A. Теперь потоки через ab и ef действительно взаимокомпенсируются. Отрезки bc и de выбраны так, чтобы они были точно параллельны линиям поля в их местоположении, поэтому поток через эти участки поверхности отсутствует.

И тогда, для того, чтобы общий поток был равен нулю, он должен быть нулевым и через сегмент cd. Это означает, что электрическое поле внутри серой оболочки должно быть параллельно cd. Если стартануть с точки А и пойти по любой линии поля наружу, то придется навернуть резкий угол на внутреннем краю серой оболочки, а затем пройти вдоль оболочки и медленно выйти наружу, сделав еще один резкий поворот на внешнем краю. (Толщина серой оболочки определяется длительностью ускорения заряда.)

И вот выходит итоговая иллюстрация силовых линий. Поперечная часть электрического поля ускоренного заряда также называется полем излучения, поскольку со временем она «излучается» наружу в сферу, расширяющуюся со скоростью света. Если ускорение заряженной частицы достаточно велико, то поле излучения может быть достаточно сильным, воздействуя на далекие заряды гораздо сильнее, чем обычное радиальное поле заряда, движущегося с постоянной скоростью. Поле излучения может также накапливать относительно большое количество энергии, которая уносится от создавшего ее заряда.

Сила поля излучения

Чтобы превратить качественные идеи предыдущего раздела в количественные формулы,
рассмотрим несколько более простую ситуацию, в которой положительно заряженная частица вначале летит вправо, а потом внезапно останавливается. Пусть v₀ — начальная скорость, и пусть замедление начинается в момент времени t = 0 и заканчивается в момент времени t = t₀. Предположим, что ускорение является постоянным в течение этого временного интервала:

Также положим, что v₀ намного меньше скорости света, так что релятивистское сжатие и растяжение электрического поля, обсуждаемые ранее, пренебрежимо малы. Покажем ситуацию в некоторый момент времени T, значительно более поздний, чем t₀. «Импульс» излучения содержится в сферической оболочке толщиной ct₀ и радиусом cT. Вне этой оболочки электрическое поле указывает в сторону от того места, где была бы частица, если бы она продолжала двигаться; эта точка находится на расстоянии v₀T справа от ее фактического местоположения. (Расстояние, пройденное во время торможения ничтожно мало в этом масштабе.) На рисунке для ясности показана только одна полевая линия, выходящая под углом θ от направления движения частицы. В этой линии есть резкий изгиб, когда она проходит через оболочку, как обсуждалось выше. Мы хотели бы знать, насколько сильно электрическое поле внутри оболочки.

Давайте разберем искривленное поле на две составляющие: радиальную составляющую , которая указывает в сторону от местоположения частицы, и поперечную составляющую , которая указывает в перпендикулярном направлении

Соотношение этих компонентов определяется направлением излома

Мы можем найти радиальную компоненту, применив закон Гаусса к крошечной рамке, расположенной на внутренней поверхности оболочки (Gaussian pillbox на рисунке). Пусть стороны рамки будут бесконечно короткими, чтобы поток через них был ничтожен. Тогда, поскольку чистый поток через рамку равен нулю, радиальная составляющая вектора E (то есть составляющая, перпендикулярная верхней и нижней частям рамки) должна быть одинаковой с каждой стороны внутренней поверхности оболочки. Но внутри сферы излучения электрическое поле задается законом Кулона. Таким образом, радиальная составляющая искривленного поля равна

где q — заряд частицы. Подставим это уравнение в предыдущее и используем тот факт, что R = cT:

Хотя выражение выводилось для частного случая, когда конечная скорость частицы равна нулю, оно верно и в более общих случаях. (Чтобы убедиться в этом, рассмотрите случай, когда частица сначала находится в состоянии покоя, а затем получает внезапный удар вправо).

Таким образом, у нас есть все, что нужно знать о силе импульса излучения. Во-первых, обратите внимание, что поперечное поле пропорционально 1/R, а не квадрату. Это означает, что с течением времени и увеличением R, поперечное поле становится намного сильнее радиального; на очень больших расстояниях радиальным полем можно полностью пренебречь, и поле будет чисто поперечным. Во-вторых, рассмотрим зависимость от угла θ: она слабее всего вдоль направления движения (θ = 0 или 180°) и сильнее всего под прямым углом к движению (θ = 90°). Оглядываясь на предыдущий рисунок, мы видим, что размер излома в поле является качественным показателем напряженности поля. Наконец, обратите внимание, что сила поперечного поля пропорциональна а, величине ускорения частицы. Чем больше ускорение, тем сильнее импульс излучения.

Этот импульс излучения несет в себе энергию. Вспомним из электростатики, что энергия на единицу объема, запасенная в любом электрическом поле, пропорциональна квадрату напряженности поля. В нашем случае это подразумевает

Поскольку объем сферической оболочки (самой оболочки, а не области, которую она охватывает) пропорционален квадрату радиуса, полная энергия, содержащаяся в ней, не изменяется с течением времени и увеличением R. Таким образом, когда заряженная частица ускоряется, она теряет энергию для своего окружения в количестве, пропорциональном квадрату ее ускорения. Этот процесс является основным механизмом, лежащим в основе всего электромагнитного излучения: видимого света и его невидимых собратьев, от радиоволн до гамма-лучей.

Формула Лармора

Теперь можно перейти к приложениям. Выведем точную формулу для энергии, излучаемой ускоренной заряженной частицей. Энергия на единицу объема, запасенная в любом электрическом поле, равна

Как только импульс становится достаточно большим, мы можем пренебречь радиальной составляющей поля и просто подключить для . В результате получается

Если нас не волнует направление, в котором идет энергия, то удобно усреднить уравнение по всем направлениям. Провернем один математический трюк. Введем координатную систему с началом координат в центре сферы и осью вдоль первоначального направления движения частицы. Тогда для любой точки (x, y, z) на сферической оболочке cosθ = x/R. Используя угловые скобки〈 〉для обозначения среднего значения по всем точкам на оболочке, запишем тождество

Теперь, поскольку начало координат находится в центре сферы, придется согласиться, что среднее значение квадрата икс равно среднему значению и для квадратов других компонент:

но тогда выходит, что

Ну, а так как и R — константа по всей оболочке, то:

Таким образом, средняя энергия на единицу объема, запасенная в поперечном электрическом поле, равна

Для получения полной энергии, накопленной в поперечном электрическом поле, необходимо умножить полученное выражение на объем сферической оболочки. Площадь поверхности оболочки равна 4πR², а ее толщина — ct₀, поэтому ее объем является произведением этих множителей. Тогда общая энергия

Заметим, что полная энергия не зависит от R; то есть оболочка несет в себе фиксированное количество энергии, которое не уменьшается по мере ее расширения. До сих пор в обсуждениях фигурировало только электрическое поле ускоренного заряда. Но оказывается, что есть еще и магнитное поле, которое уносит равное количество энергии. В принципе, ошибка в два раза не так существенна для нашей формулы, но все же будем честными. Оставим все интересности связанные с магнитным полем на следующий раз, а пока все же учтем, что суммарная энергия, переносимая импульсом излучения, в два раза больше, чем в последнем уравнении, или

Обычно удобнее разделить обе стороны этого уравнения на длительность ускорения частицы t₀. Левая сторона тогда становится энергией, излучаемой частицей в единицу времени, или мощностью, выделяемой во время ускорения:

Этот результат называется формула Лармора, так как он был впервые получен (с использованием более сложного метода) Джозефом Лармором в 1897 году. Вывод, приведенный здесь, был впервые опубликован Джозефом Томсоном (первооткрывателем электрона) в 1907 году. Хотя наш вывод опиратся на частный случай, когда конечная скорость частицы равна нулю, формула Лармора справедлива для любого вида ускоренного движения при условии, что скорость частицы всегда намного меньше скорости света. Тем не менее, можно сделать и обобщение на релятивистский случай.

Электромагнитные Волны

В предыдущем разделе мы пришли к выводу, что когда заряженная частица ускоряется, часть ее электрического поля вырывается на свободу и удаляется со скоростью света, образуя импульс электромагнитного излучения. Часто на практике заряженные частицы непрерывно колеблются взад и вперед, посылая один импульс за другим в периодической последовательности. Вот пример электрического поля вокруг колеблющегося заряда

Если проследить прямую линию от заряда в центре рисунка, можно заметить, что поле колеблется взад и вперед. Расстояние, на котором повторяется направление поля, называется длиной волны. Например, точки А и В находятся на расстоянии одной длины волны друг от друга.

Если вы сидите в неподвижной точке и наблюдаете, как электрическое поле проходит мимо, вы обнаружите, что его направление колеблется. Время, за которое паттерн повторяется один раз, называется периодом волны и равно времени, за которое заряд источника повторяет один цикл своего движения. Период также равен времени, за которое волна проходит расстояние в одну длину волны. Поскольку она движется со скоростью света, мы можем заключить, что длина волны и период связаны пропорцией

где λ («лямбда») — стандартный символ для длины волны, а Т — это стандартный символ для периода, и с — скорость света. Частота колебания обратнопропорциональна периоду. Из соображений традиции и удобства, электромагнитные волны разной длины называются по-разному. Радиоволны с длиной волны в метр и более генерируются относительно легко, когда заряд проходит вверх и вниз по антенне. Несколько более короткие длины волн используются для телевизионной и микроволновой связи. Инфракрасные волны — длина волны от миллиметра до 700 нанометров; случайные микроскопические движения, присутствующие во всей материи при комнатной температуре, вызывают излучение инфракрасного излучения с длиной волны около сотой доли миллиметра. Более горячие объекты, такие как Солнце, испускают излучение в видимом спектре, который охватывает диапазон 400-700 нанометров, к которому чувствителен человеческий глаз. Длина волны видимого света определяет его цвет, причем красный свет имеет самую длинную длину волны, а фиолетовый — самую короткую. Еще более коротковолновые волны относятся к ультрафиолетовым, рентгеновским и гамма-лучам.

Почему небо голубое?

Солнце испускает видимый свет всех цветов, который бомбардирует атмосферу Земли. Атмосфера относительно прозрачна для большей части этого света. Но если бы атмосфера была полностью прозрачной, небо казалось бы черным. По-видимому, часть света от Солнца рассеивается или отклоняется молекулами воздуха. Когда мы смотрим на небо в направлении от Солнца, мы видим этот рассеянный свет, который в основном синий, и наоборот, красный свет легче проходит толщу атмосферы, что делает его видимым, когда Солнце находится вблизи горизонта. Но почему молекулы воздуха рассеивают синий свет больше, чем красный? Очевидно, короткие волны рассеиваются гораздо сильнее, чем длинные. Мы можем понять это явление, представив простую модель процесса рассеяния и применив результаты вышепроведенных выкладок, согласно которым энергия, излучаемая ускоренным зарядом, пропорциональна квадрату ускорения. Рассмотрим один атом азота или кислорода в атмосфере.

Для наших целей лучше всего представить атом как крошечную точку с положительным зарядом (ядро), окруженную большим облаком размазанного отрицательного заряда (электроны). Заряды компенсируются, и атом электрически нейтрален. Теперь предположим, что мимо проходит электромагнитная волна. Электрическое поле в месте расположения атома сначала указывает вверх, затем вниз, затем снова вверх, снова вниз… (Для видимого света длина волны намного больше, чем размер атома.) Хотя нейтральный атом не чувствует чистой силы от этого электрического поля, его составляющие действительно чувствуют силы, поэтому они слегка отклоняются в противоположных направлениях. Впрочем, далеко они не уходят, так как потенциал дает о себе знать. Это похоже на то, как если бы электроны и ядро были соединены вместе жесткой пружиной. Когда волна проходит мимо, ядро слегка колеблется вверх и вниз на той же частоте, что и волна. Мы можем описать его положение как:

где ω = 2πc/λ и λ-длина волны. Пока «пружина» очень жесткая, амплитуда x₀ будет зависеть только от силы электрического поля, а не от длины волны. Поскольку ядро колеблется вверх и вниз, оно само испускает электромагнитное излучение с одинаковой частотой и длиной волны. Согласно предыдущим пунктам, излучаемая энергия пропорциональна квадрату ускорения. Ускорение ядра определяется как вторая производная его положения:

Теперь мы можем определить, как количество излучаемой энергии зависит от длины волны:

Эта формула гласит, что коротковолновая волна заставляет ядро излучать гораздо больше энергии, чем длинноволновая. То же самое верно и в отношении излучения, испускаемого электронами, которые колеблются в противоположном направлении с той же частотой. Это электромагнитное излучение, испускаемое атомом, несет в себе энергию, и энергия должна откуда-то браться. Должно быть правдоподобным, что энергия исходит от поступающей волны, возбуждающей атомные колебания. Эта волна продолжает свой путь, но часть ее энергии была потеряна. Не будем вдаваться в точный механизм этого процесса на данном этапе — просто уповаем на сохранение энергии.

Таким образом, можно заключить, что когда проходит световая волна, атом забирает из нее некоторую энергию и вновь излучает эту энергию как волну той же длины во все направления. Из последнего уравнения видно, что этот процесс гораздо эффективнее для коротковолнового (то есть фиолетового и синего) света, чем для длинноволнового. Вот почему небо голубое. И наоборот, когда смесь различных цветов света проходит через большое количество воздуха, большая часть синего света удаляется, оставляя в основном красный. Вот почему так прекрасны закаты.

P.S.

Кто-то может возразить, дескать, небо фиолетовое, но на восприятии человека сказывается предрасположенность к синему спектру из-за строения колбочек в глазах, да и вообще, в ваших расчетах слишком много частностей и допущений. Наиболее правильным будет обратить его внимание на неравномерность интенсивности спектра Солнца. А более строгий вывод формулы Лармора осуществляется через уравнения Максвелла, потенциалы Лиенара-Вихерта и функции Грина. Подобные строгие выкладки приводят к тому же результату и описаны во многих книжках по электродинамике (Например Е.Ю.Петров Излучение электромагнитных волн движущимися заряженными частицами). Мы же использовали лекционные наброски Дэниела Шрёдера, который в свою очередь опирался на потрясающий учебник Эдварда Перселла «Электричество и магнетизм», что во многом наглядней и более интуитивно.

  • специальная теория относительности
  • поля
  • эмп
  • формула лармора
  • школьная задача
  • Математика
  • Научно-популярное
  • Физика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *