4. Проверка расчета токов
Найденные методом узловых потенциалов токи рекомендуется сразу же проверить по первому закону Кирхгофа.
Пусть, например, для токов, сходящихся в узле 1, получены следующие значения:
= 0,844 A; = 2,124 A; = –1,282 A.
В соответствии с первым законом Кирхгофа .
= 2,124 – 1,282 = 0,842 A;
= 0,844 A.
Расхождение в значениях токов (абсолютная погрешность) составляет
I = 0,844 – 0,842 = 0,002 А.
Относительная погрешность вычисления токов равна
%.
Аналогично делается проверка и для остальных узлов.
Вторая проверка заключается в составлении уравнения баланса мощностей, выражающего закон сохранения энергии в электрической цепи и устанавливающего равенство мощностей источников и приемников электрической энергии:
, (4.1)
где – мощность источникаk-ой ветви; – мощность, потребляемая сопротивлениемk-ой ветви; m – число ветвей в цепи.
В левой части уравнения (4.1) берется алгебраическая сумма мощностей: если направление тока не совпадает с направлением ЭДС, то данный источник работает в режиме потребителя энергии, и произведение пишется со знаком минус (его можно записать с плюсом в правой части уравнения). Так, в схеме на рис. 2.1
.
5. Метод контурных токов
Число уравнений, составляемых по этому методу, равно числу взаимно независимых контуров. При рассмотрении схемы каждый последующий контур является независимым относительно предыдущих, если он отличается от них хотя бы одной новой ветвью. Рассматриваемая цепь имеет три независимых контура.
Для каждого из этих контуров назначается так называемый контурный ток, замыкающийся по всем сопротивлениям своего контура. Направления этих токов произвольны.
Для выбранных контурных токов ( ина рис. 2.1) записываются уравнения по второму закону Кирхгофа. Контур при этом обходится по направлению контурного тока.
Рассмотрим подробно составление уравнения для первого контура.
Контурный ток , протекая по сопротивлениям своего контура, создает на них падение напряжения, равное
.
По сопротивлению , являющемуся элементом первого контура, протекает контурный ток второго контура . Создаваемое им падение напряжения складывается с предыдущим, так как направления токов и в сопротивлении одинаковы.
Падение напряжения, создаваемое контурным током на сопротивлении , должно вычитаться из этой суммы, так как направления токов и в четвертой ветви противоположны друг другу.
В правой части уравнения, согласно второму закону Кирхгофа, записывается алгебраическая сумма всех ЭДС контура: .
Итак, для первого контура имеем:
.
Аналогично составляются уравнения для второго и третьего контуров:
;
.
После ряда преобразований уравнения контурных токов можно представить в следующем виде:
;
; (5.1)
.
Матрица коэффициентов при неизвестных токах
может быть составлена сразу, без записи уравнений, на основании анализа схемы. Ее порядок (число столбцов, равное числу строк) равен числу контурных токов.
Элементы, стоящие на главной диагонали (сопротивления с одинаковыми индексами), – это так называемые собственные сопротивления контуров, равные сумме сопротивлений каждого контура:
; ; .
Сопротивление с разными индексами, называемое общим или взаимным сопротивлением двух смежных контуров, – это сопротивление ветви, принадлежащей одновременно двум соседним контурам; оно положительно, если направления контурных токов в нем совпадают, и отрицательно в противном случае:
; ; .
Первый индекс у каждого сопротивления совпадает с номером рассматриваемого контура и одновременно указывает на номер строки матрицы. Второй индекс указывает на номер контура, смежного с рассматриваемым, и определяет номер столбца.
Каждый из элементов матрицы свободных членов
представляет собой алгебраическую сумму всех ЭДС контура. ЭДС входит в эту сумму с плюсом, если ее направление совпадает с направлением контурного тока, и с минусом в противном случае:
; ; .
После решения системы уравнений (5.1) действительные токи ветвей определяются по найденным контурным:
; ; ;
; ; .
Расчет электрических цепей постоянного тока
Целью расчёта электрической цепи постоянного тока является определение некоторых параметров на основе исходных данных, из условия задачи. На практике используют несколько методов расчёта простых цепей. Один из них базируется на применении эквивалентных преобразований, позволяющих упростить цепь.
Под эквивалентными преобразованиями в электрической цепи подразумевается замена одних элементов другими таким образом, чтобы электромагнитные процессы в ней не изменились, а схема упрощалась. Одним из видов таких преобразований является замена нескольких потребителей, включённых последовательно или параллельно, одним эквивалентным.
Несколько последовательно соединённых потребителей можно заменить одним, причём его эквивалентное сопротивление равно сумме сопротивлений потребителей, включённых последовательно. Для n потребителей можно записать:
где r1 , r2, . rn – сопротивления каждого из n потребителей.
При параллельном соединении n потребителей эквивалентная проводимость gэ равна сумме проводимостей отдельных элементов, включённых параллельно:
Учитывая, что проводимость является обратной величиной по отношению к сопротивлению, можно эквивалентное сопротивление определить из выражения:
1/rэ = 1/r1 + 1/r2 +…+ 1/rn,
где r1, r2, . rn – сопротивления каждого из n потребителей, включённых параллельно.
В частном случае, когда параллельно включены два потребителя r1 и r2, эквивалентное сопротивление цепи:
rэ = (r1 х r2)/(r1 + r2)
Преобразования в сложных цепях, где отсутствует в явном виде последовательное и параллельное соединение элементов (рисунок 1), начинают с замены элементов, включённых в исходной схеме треугольником, на эквивалентные элементы, соединённые звездой.
Рисунок 1. Преобразование элементов цепи: а — соединённых треугольником, б — в эквивалентную звезду
На рисунке 1, а треугольник элементов образуют потребители r1, r2, r3. На рисунке 1, б этот треугольник заменён эквивалентными элементами ra, rb, rc, соединёнными звездой. Чтобы не происходило изменение потенциалов в точках a, b, с схемы, сопротивления эквивалентных потребителей определяются из выражений:
Упрощение исходной цепи можно также осуществить заменой элементов, соединённых звездой, схемой, в которой потребители соединены треугольником.
В схеме, изображённой на рисунке 2, а, можно выделить звезду, образованную потребителями r1, r3, r4. Эти элементы включены между точками c, b, d. На рисунке 2, б между этими точками находятся эквивалентные потребители rbc, rcd, rbd, соединённые треугольником. Сопротивления эквивалентных потребителей определяются из выражений:
Рисунок 2. Преобразование элементов цепи: а — соединённых звездой, б — в эквивалентный треугольник
Дальнейшее упрощение схем, приведённых на рисунках 1, б и 2, б, можно осуществлять путём замены участков с последовательным и параллельным соединением элементов их эквивалентными потребителями.
При практической реализации метода расчёта простой цепи с помощью преобразований выявляются в цепи участки с параллельным и последовательным соединением потребителей, а затем рассчитываются эквивалентные сопротивления этих участков.
Если в исходной цепи в явном виде нет таких участков, то, применяя описанные ранее переходы от треугольника элементов к звезде или от звезды к треугольнику, проявляют их.
Данные операции позволяют упростить цепь. Применив их несколько раз, приходят к виду с одним источником и одним эквивалентным потребителем энергии. Далее, применяя законы Ома и Кирхгофа, рассчитывают токи и напряжения на участках цепи.
Расчет сложных цепей постоянного тока
В ходе расчёта сложной цепи необходимо определить некоторые электрические параметры (в первую очередь токи и напряжения на элементах) на основе исходных величин, заданных в условии задачи. На практике используются несколько методов расчёта таких цепей.
Для определения токов ветвей можно использовать: метод, базирующийся на основании непосредственного применения законов Кирхгофа, метод контурных токов, метод узловых напряжений.
Для проверки правильности вычисления токов необходимо составить баланс мощностей. Из закона сохранения энергии следует, что алгебраическая сумма мощностей всех источников питания цепи равна арифметической сумме мощностей всех потребителей.
Мощность источника питания равна произведению его ЭДС на величину тока, протекающего через данный источник. Если направление ЭДС и тока в источнике совпадают, то мощность получается положительной. В противном случае она отрицательна.
Мощность потребителя всегда положительна и равна произведению квадрата тока в потребителе на величину его сопротивления.
Математически баланс мощностей можно записать в следующем виде:
где n – количество источников питания в цепи; m – количество потребителей.
Если баланс мощностей соблюдается, то расчет токов выполнен правильно.
В процессе составления баланса мощностей можно выяснить, в каком режиме работает источник питания. Если его мощность положительна, то он отдает энергию во внешнюю цепь (например, как аккумулятор в режиме разряда). При отрицательном значении мощности источника последний потребляет энергию из цепи (аккумулятор в режиме заряда).
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Электрические цепи постоянного тока и методы их расчета
В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.
Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.
ООО «Технолог» — оптовая (мин. заказ 5 000 руб) продажа и поставки электромонтажного, электротехнического и светотехнического оборудования.
Звоните (495) 740-42-64 Ждем. Скидки. Доставка.
Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.
Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:
1) Источники электрической энергии (питания).
Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).
2) Потребители электрической энергии.
Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.
3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.
Все элементы цепи охвачены одним электромагнитным процессом.
В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r0, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.
1.2. Основные понятия и определения для электрической цепи
Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r0, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2, …, Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.
При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r0, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R, R1 и R2.
Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.
При расчете в схеме электрической цепи выделяют несколько основных элементов.
Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r0, E, R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.
Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.
Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.
Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:
а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;
б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;
в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.
Все электрические цепи делятся на линейные и нелинейные.
Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.
Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.
Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.
1.3. Основные законы цепей постоянного тока
Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.
Закон Ома для участка цепи
Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома
Рис. 1.3
В этом случае UR = RI – называют напряжением или падением напряжения на резисторе R, а – током в резисторе R.
При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:
В этом случае закон Ома для участка цепи запишется в виде:
Закон Ома для всей цепи
Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r0 (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r0 + R всей цепи:
Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.
Первый закон Кирхгофа
В любом узле электрической цепи алгебраическая сумма токов равна нулю
где m – число ветвей подключенных к узлу.
При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) I — I1 — I2 = 0.
Второй закон Кирхгофа
В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках
где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rк в контуре;
Uк = RкIк – напряжение или падение напряжения на к-м элементе контура.
Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:
Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю
При записи уравнений по второму закону Кирхгофа необходимо:
1) задать условные положительные направления ЭДС, токов и напряжений;
2) выбрать направление обхода контура, для которого записывается уравнение;
3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.
Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):
В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия
Скорость преобразования электрической энергии в другие виды представляет электрическую мощность
Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.
Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение E I подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение E I подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:
При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См)
Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1мA = 10–3А), килоампер (1кA = 103А), милливольт (1мВ = 10–3В), киловольт (1кВ = 103В), килоом (1кОм = 103Ом), мегаом (1мОм = 106Ом), киловатт (1кВт = 103Вт), киловатт-час (1кВт-час = 103 ватт-час).
1.4. Способы соединения сопротивлений и расчет эквивалентного
сопротивления электрической цепи
Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.
Электрическая цепь с последовательным соединением элементов
Рис. 1.4 |
Рис. 1.5 |
Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).
На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:
Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома
и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).
Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.
Электрическая цепь с параллельным соединением элементов
Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).
В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:
откуда следует, что
В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением
Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:
По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.
Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)
Отсюда следует, что
т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.
По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.
Электрическая цепь со смешанным соединением элементов
Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.
Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:
В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):
На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:
Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):
На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно
Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.
Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:
Рис. 1.10 |
Рис. 1.11 |
В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.
Соединение элементов электрической цепи по схемам «звезда» и «треугольник»
В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.
Рис. 1.12 |
Рис. 1.13 |
В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:
Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:
После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)
1.5. Источник ЭДС и источник тока в электрических цепях
При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r0 заменяют расчетным эквивалентным источником ЭДС или источником тока.
Рис. 1.14
Источник ЭДС (рис. 1.14) имеет внутреннее сопротивление r0, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС.
Для данной цепи запишем соотношение по второму закону Кирхгофа
Эта зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 1.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения на его внутреннем сопротивлении r0.
У идеального источника ЭДС внутреннее сопротивление r0 н (приближенно r0 » 0). В этом случае его вольт-амперная характеристика представляет собой прямую линию (рис. 1.16), следовательно, напряжение U на его зажимах постоянно (U=E) и не зависит от величины сопротивления нагрузки Rн.
Рис. 1.17
Источник тока, заменяющий реальный источник электрической энергии, характеризуется неизменным по величине током Iк, равным току короткого замыкания источника ЭДС , и внутренним сопротивление r0, включенным параллельно (рис. 1.17).
Стрелка в кружке указывает положительное направление тока источника. Для данной цепи запишем соотношение по первому закону Кирхгофа
В этом случае вольт-амперная (внешняя) характеристика I(U) источника тока определится соотношением
и представлена на рис. 1.18.
Рис. 1.18 | Рис. 1.19 |
Уменьшение тока нагрузки I при увеличении напряжения U на зажимах ab источника тока, объясняется увеличением тока Iо, замыкающегося в цепи источника тока.
В идеальном источнике тока r0>>Rн. В этом случае можно считать, что при изменении сопротивления нагрузки Rн потребителя Iо » 0, а I » Iк. Тогда из выражения (1.11) следует, что вольт-амперная характеристика I(U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I = Iк = E/r0 (рис. 1.19).
При сравнении внешних характеристик источника ЭДС (рис. 1.15) и источника тока (рис. 1.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением.
Ток в нагрузке Rн для схем источника ЭДС (рис. 1.14) и источника тока (рис. 1.17) одинаков и равен .
Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последователь-ном соединении сопротивления r0 и Rн складываются. В схеме (рис. 1.17) ток распределяется обратно пропорционально сопротивлениям r0 и Rн двух параллельных ветвей. Ток в нагрузке Rн
т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.
Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r0 и величиной электродвижущей силы Е.
В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.
Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).
Для этой цепи на основании второго закона Кирхгофа можно записать
Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДС Eэ и внутреннее сопротивление rэ.
Рис. 1.21 |
Рис. 1.22 |
При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:
Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.
1.6. Режимы работы электрической цепи
При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов.
Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 1.23).
Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса.
Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления
Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС Eэ и внутренним сопротивлением r0э, нагрузкой для которого является входное сопротивление пассивного двухполюсника Rвх = Rн.
Режим работы электрической цепи (рис. 1.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки Rн. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.
Работа активного двухполюсника под нагрузкой Rн определяется его вольт-амперной (внешней) характеристикой, уравнение которой (1.10) для данной цепи запишется в виде
Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 1.24), соответствующим режимам холостого хода и короткого замыкания.
1. Режим холостого хода
В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх
2. Режим короткого замыкания
В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление Rн=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U = IRн, а уравнение (1.12) вольт-амперной характеристики можно записать в виде
Значение тока короткого замыкания Iк.з соответствует т.2 на вольт-амперной характеристике (рис. 1.24).
Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r0э могут быть определены по результатам режимов холостого хода и короткого замыкания:
3. Номинальный режим
Номинальный режим электрической цепи обеспечивает технические параметры как отдельных элементов, так и всей цепи, указанные в технической документации, в справочной литературе или на самом элементе. Для разных электротехнических устройств указывают свои номинальные параметры. Однако три основных параметра указываются практически всегда: номинальное напряжение Uном, номинальная мощность Рном и номинальный ток Iном.
Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением (1.12), записанном для номинальных параметров
На вольт-амперной характеристике (рис. 1.24) это уравнение определяется точкой 3 с параметрами Uном и Iном.
4. Согласованный режим
Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. Определим параметры электрической цепи (рис. 1.23), обеспечивающие получение согласованного режима. При подключении нагрузки Rн к активному двухполюснику (рис. 1.23) в ней возникает ток
При этом на нагрузке выделится активная мощность
Определим соотношение между сопротивлением нагрузки Rн и внутренним сопротивлением r0э эквивалентного источника ЭДС, при котором в сопротивлении нагрузки Rн выделяется максимальная мощность при неизменных значениях Eэ и r0э. С этой целью определим первую производную Р по Rн и приравняем ее к нулю:
Так как выражение в знаменателе – конечное, то, отбрасывая не имеющее физического смысла решение Rн = -r0э, получим, что значение сопротивления нагрузки, согласованное с сопротивлением источника
Можно найти вторую производную и убедиться в том, что она отрицательна , поэтому соотношение (1.17) соответствует максимуму функции P = F(Rн).
Подставив (1.17) в (1.16), получим значение максимальной мощности, которая может выделена в нагрузке Rн
Полезная мощность, выделяющаяся в нагрузке, определяется уравнением (1.16). Полная активная мощность, выделяемая активным двухполюсником,
Коэффициент полезного действия
Для мощных электротехнических устройств такое низкое значение КПД недопустимо. Но в электронных устройствах и схемах, где величина Р измеряется в милливаттах, с низким КПД можно не считаться, поскольку в этом режиме обеспечивается максимальная передача мощности на нагрузку.
1.7. Расчет электрических цепей с использованием законов Ома и Кирхгофа
Законы Ома и Кирхгофа используют, как правило, при расчете относительно простых электрических цепей с небольшим числом контуров, хотя принципиально с их помощью можно рассчитать сколь угодно сложные электрические цепи.
При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Зная токи, можно найти напряжения на элементах цепи, мощность, потребляемую отдельными элементами и всей цепью в целом, мощность источников питания и др.
Расчет цепи с одним источником питания
Электрическая цепь, схема которой приведена на рис. 1.25, состоит из одного источника питания, имеющего ЭДС E и внутреннее сопротивление r0, и резисторов R1, R2, R3, подключенных к источнику по смешанной схеме. Операции расчета такой схемы рекомендуется производить в определенной последовательности.
1. Обозначение токов и напряжений на участках цепи.
Резистор R1 включен последовательно с источником, поэтому ток I1 для них будет общим, токи в резисторах R2 и R3 обозначим соответственно I2 и I3. Аналогично обозначим напряжения на участках цепи.
2. Расчет эквивалентного сопротивления цепи.
Резисторы R2 и R3 включены по параллельной схеме и заменяются согласно (1.7) эквивалентным сопротивлением:
В результате цепь на рис. 1.25 преобразуется в цепь с последовательно соединенными резисторами R1, R23 и r0. Тогда эквивалентное сопротивление всей цепи запишется в виде:
3. Расчет тока в цепи источника. Ток I1 определим по закону Ома (1.2):
4. Расчет напряжений на участках цепи. По закону Ома (1.1) определим величины напряжений:
Напряжение U на зажимах ab источника питания определим по второму закону Кирхгофа (1.4)для контура I (рис. 1.25):
5. Расчет токов и мощностей для всех участков цепи. Зная величину напряжения U23, определим по закону Ома токи в резисторах R2 и R3:
По формуле (1.8) определим величину активной электрической мощности, отдаваемую источником питания потребителям электрической энергии:
В элементах схемы расходуются активные мощности:
На внутреннем сопротивлении r0 источника питания расходуется часть электрической мощности, отдаваемой источником. Эту мощность называют мощностью потерь :
6. Проверка правильности расчетов. Эта проверка производится составлением уравнения баланса мощностей (1.8): мощность, отдаваемая источником питания, должна быть равна сумме мощностей, расходуемых в резистивных элементах схемы:
Кроме того, правильность вычисления токов можно проверить, составив уравнение по первому закону Кирхгофа (1.3) для узла схемы:
Расчет разветвленной электрической цепи с несколькими источниками питания
Основным методом расчета является метод непосредственного применения первого и второго законов Кирхгофа.
В качестве примера рассмотрим цепь, схема которой приведена на рис. 1.26. Схема цепи содержит 6 ветвей (m=6) и 4 узла: a, b, c, d (n=4). По каждой ветви проходит свой ток, следовательно число неизвестных токов равно числу ветвей, и для определения токов необходимо составить m уравнений. При этом по первому закону Кирхгофа (1.3) составляют уравнения для (n–1) узлов. Недостающие m–(n–1) уравнения получают по второму закону Кирхгофа (1.4), составляя их для m–(n–1) взаимно независимых контуров. Рекомендуется выполнять операции расчета в определенной последовательности.
1. Обозначение токов во всех ветвях. Направление токов выбираем произвольно, но в цепях с источниками ЭДС рекомендеются, чтобы направление токов совпадало с направлением ЭДС.
2. Составление уравнений по первому закону Кирхгофа. Выбираем 4–1=3 узла (a, b, c) и для них записываем уравнения:
3. Составление уравнений по второму закону Кирхгофа. Необходимо составить 6–3=3 уравнения. В схеме на рис. 1.26 выбираем контура I, II, III и для них записываем уравнения:
4. Решение полученной системы уравнений и анализ результатов. Полученная система из шести уравнений решается известными математическими методами. Если в результате расчетов численное значение тока получено со знаком «минус», это означает, что реальное направление тока данной ветви противоположно принятому в начале расчета. Если в ветвях с ЭДС токи совпадают по направлению с ЭДС, то данные элементы работают в режиме источников, отдавая энергию в схему. В тех ветвях, где направления тока и ЭДС не совпадают, источники ЭДС работает в режиме потребителя.
5. Проверка правильности расчетов. Для проверки правильности произведенных расчетов можно на основании законов Кирхгофа написать уравнения для узлов и контуров схемы, которые не использовались при составлении исходной системы уравнений:
Независимой проверкой является составление уравнения баланса мощностей (1.8) с учетом режимов работы элементов схемы с ЭДС:
Если активная мощность, поставляемая источниками питания, равна по величине активной мощности, израсходованной в пассивных элементах электрической цепи, то правильность расчетов подтверждена.
1.8. Основные методы расчета сложных электрических цепей
С помощью законов Ома и Кирхгофа в принципе можно рассчитать электрические цепи любой сложности. Однако решение в этом случае может оказаться слишком громоздким и потребует больших затрат времени. По этой причине для расчета сложных электрических цепей разработаны на основе законов Ома и Кирхгофа более рациональные методы расчета, два из которых: метод узлового напряжения и метод эквивалентного генератора, рассмотрены ниже.
Метод узлового напряжения
Этот метод рекомендуется использовать в том случае, если сложную электрическую схему можно упростить, заменяя последовательно и параллельно соединенные резисторы эквивалентными, используя при необходимости преобразование треугольника сопротивлений в эквивалентную звезду. Если полученная схема содержит несколько параллельно соединенных активных и пассивных ветвей, как, например, схема на рис. 1.27, то ее расчет и анализ весьма просто можно произвести методом узлового напряжения.
Пренебрегая сопротивлением проводов, соединяющих ветви цепи, в ее схеме (рис. 1.27) можно выделить два узла: a и b. В зависимости от значений и направлений ЭДС и напряжений, а также значений сопротивлений ветвей между узловыми точками a и b установится определенное узловое напряжение Uab. Предположим, что оно направлено так, как показано на рис. 1.27, и известно. Зная напряжение Uab легко найти токи во всех ветвях.
Выберем положительные направления токов и обозначим их на схеме. Запишем уравнения по второму закону Кирхгофа для контуров (1.4), проходящих по первой и второй ветви, содержащих источники ЭДС, совершая обход контуров по часовой стрелке.
Рис. 1.27
Определим значения токов, возникающих в первой и второй ветвях,
где: ; – проводимости соответственно первой и второй ветвей.
Запишем уравнения по второму закону Кирхгофа для ветвей (1.5), содержащих источники напряжений, совершая обход контуров также по часовой стрелке.
Определим значения токов, возникающих в третьей и четвертой ветвях,
где: ; – проводимости соответственно третьей и четвертой ветвей.
Ток в пятой ветви определим по закону Ома:
где – проводимость пятой ветви.
Для вывода формулы, позволяющей определить напряжение Uab, напишем уравнение по первому закону Кирхгофа (1.3) для узла a:
После замены токов их выражениями (1.20) – (1.24) и соответствующих преобразований получим
Формула узлового напряжения в общем случае имеет вид
При расчете электрической цепи методом узлового напряжения после определения величины напряжения Uab значения токов в ветвях находят по их выражениям (1.20) – (1.24).
При записи формулы (1.25) следует задаться положительным направлением узлового напряжения Uab. Со знаком «+» в (1.25) должны входить ЭДС, направленные между точками a и b встречно напряжению Uab, и напряжения ветвей, направленные согласно с Uab. Знаки в формуле (1.25) не зависят от направления токов ветвей.
При расчете и анализе электрических цепей методом узлового напряжения рекомендуется выбирать положительные направления токов после определения узлового напряжения. В этом случае при расчете токов по выражениям (1.20) – (1.24) положительные направления токов нетрудно выбрать таким образом, чтобы все они совпадали с их действительными направлениями.
Проверка правильности произведенных расчетов проводится по первому закону Кирхгофа для узла a или b, а также составлением уравнения баланса мощностей (1.8).
Метод эквивалентного генератора
Метод эквивалентного генератора позволяет произвести частичный анализ электрической цепи. Например, определить ток в какой-либо одной ветви сложной электрической цепи и исследовать поведение этой ветви при изменении ее сопротивления. Сущность метода заключается в том, что по отношению к исследуемой ветви amb (рис. 1.28, а) сложная цепь заменяется активным двухполюсником А (смотри рис. 1.23), схема замещения которого представляется эквивалентным источником (эквивалентным генератором) с ЭДС Eэ и внутренним сопротивлением r0э, нагрузкой для которого является сопротивление R ветви amb.
Если известны ЭДС и сопротивление эквивалентного генератора, то ток I в ветви amb определяется по закону Ома
Покажем, что параметры эквивалентного генератора Eэ и r0э можно определить соответственно по режимам холостого хода и короткого замыкания активного двухполюсника.
В исследуемую схему (рис. 1.28, а) введем два источника, ЭДС которых E1 и Eэ равны и направлены в разные стороны (рис. 1.28, б). При этом величина тока I в ветви amb не изменится. Ток I можно определить как разность двух токов I = Iэ — I1, где I1 – ток, вызванный всеми источниками двухполюсника А и ЭДС E1 (рис. 1.28, в); Iэ – ток, вызванный только ЭДС Eэ (рис. 1.28, г).
Если выбрать ЭДС E1 такой величины, чтобы получить в схеме (1.28, в) ток I1=0, то ток I будет равен (рис. 1.28, г)
где r0э – эквивалентное сопротивление двухполюсника А относительно выводов а и b.
Так как при I1 = 0 (рис. 1.28, в) активный двухполюсник А будет работать относительно ветви amb в режиме холостого хода, то между выводами a и b установится напряжение холостого хода U = Uхх и по второму закону Кирхгофа для контура amba получим E1 = I1R + Uхх = Uхх. Но по условию Eэ = E1, поэтому и Eэ = Uхх. Учитывая это, формулу для определения тока I можно записать в такой форме:
В соответствии с (1.26) электрическая цепь на рис. 1.28, а может быть заменена эквивалентной цепью (рис. 1.28, д), в которой Eэ = Uхх и r0э следует рассматривать в качестве параметров некоторого эквивалентного генератора.
Значения Eэ = Uхх и r0э можно определить как расчетным, так и экспериментальным путем. Для расчетного определения Uхх и r0э необходимо знать параметры элементов активного двухполюсника и схему их соединения.
Для определения величины r0э необходимо удалить из схемы двухполюсника все источники, сохранив все резистивные элементы, в том числе и внутренние сопротивления источников ЭДС. Внутренние сопротивления источников напряжений принять равными нулю. Затем рассчитать известными методами эквивалентное сопротивление относительно выводов ab.
Для определения величины Eэ разомкнем цепь и определим по методу узлового напряжения напряжение Uab = Uхх = Eэ между выводами ab активного двухполюсника.
Экспериментально параметры эквивалентного генератора можно определить по результатам двух опытов. Разомкнув ветвь с сопротивление R (рис. 1.28, д), измеряем напряжение между выводами a и b Uab = Uхх = Eэ (опыт холостого хода).
Методы расчета электрических цепей
1.8. Методы расчета электрических цепей. Задача расчета электрической цепи ставится следующим образом. Задана схема электрической цепи, значения ее элементов и параметры источников. Требуется определить токи в ветвях и падение напряжения на элементах. Данная задача решается путем составления и решения системы уравнений, запись которых определяется выбранным методом расчета. Перед составлением уравнений необходимо указать на схеме положительные направления известных и неизвестных величин. 1.8.1. Метод непосредственного использования законов Кирхгофа. Данный метод целесообразен в следующих случаях: — для расчета неразветвленных электрических цепей; — если известна величина части токов, но неизвестны величины такого же количества источников или элементов цепи; — для определения падения напряжения между какими-либо двумя точками электрической цепи; — для проверки правильности расчетов, проведенных любым другим методом.
Рекомендуемые материалы
В пароперегреватель котельного агрегата поступает влажный пар в количестве 18 кг/с. Определить сообщаемое пару часовое количество теплоты Q, необходимое для перегрева пара до t=200 ºC, если степень сухости пара перед входом в пароперегреватель x=0,95
Термодинамика и тепломассообмен
Лабораторная №29 (Изучение затухающих электрических колебаний)
Билет РК №1 2018г с решением
решения ко всем билетам за 18/19 год рк1 по физике (см условие)
Типовой расчет 1 (1.1 1.15ж 1.17б 1.20 1.29 2.1в 2.5 2.18б 2.28 2.39)
Теоретическая физика
Изучение вынужденных электрических колебаний в колебательном контуре
Проверка может быть также осуществлена путем составления уравнения баланса мощности. Задавшись положительными направлениями искомых величин, составляют уравнения сначала по первому закону Кирхгофа, максимальное число которых должно быть на единицу меньше числа узлов схемы. Недостающие уравнения следует составить по второму закону Кирхгофа. В качестве примера составим систему уравнений для определения токов в Рис 1.17 электрической цепи, схема которой изображена на рисунке 1.17 с известными сопротивлениями и величинами и направлениями источников э.д.с. и напряжений. Поскольку данная цепь имеет пять ветвей с неизвестными токами, необходимо составить пять уравнений. Выбрав положительные направления токов в ветвях, для узлов «а» и «б» составим уравнения по первому закону Кирхгофа, а для контуров «агда», «абга» и «бвгб» при обходе последних по часовой стрелке — уравнения по второму закону Кирхгофа. 1.8.2. Метод эквивалентных структурных преобразований. В основе различных методов преобразования электрических схем лежит понятие эквивалентности, согласно которому напряжения и токи в ветвях схемы, не затронутых преобразованием, остаются неизменными. Преобразования электрических схем применяются для упрощения расчетов. Рассмотрим наиболее типичные методы преобразования. Последовательное соединение элементов. При последовательном соединении элементов через них протекает один и тот же ток I (рис.1.18). Согласно второму закону Кирхгофа, напряжение, приложенное ко всей цепи (1.27) Для последовательного соединения сопротивлений r1,r2. rn (рис. 1.18) с учетом (1.6) будем иметь (1.28) Ток в цепи с последовательным соединением элементов равен: (1.29) а напряжение на n-ом элементе равно (1.30) При последовательном соединении источников напряжения они заменяются одним эквивалентным источником с напряжением Uэкв, равным алгебраической сумме напряжений отдельных источников. Рис 1.19 Причем со знаком «+» берутся напряжения, совпадающие с напряжением эквивалентного источника, а со знаком «-» — несовпадающие (рис.1.19). Параллельное соединение элементов. Соединение групп элементов, при котором все элементы находятся под одним и тем же напряжением, называется параллельным (рис.1.20). Согласно первому Кирхгофа, ток всей цепи I равен алгебраической сумме токов в параллельных ветвях, т.е. (1.31) На основании этого уравнения с учетом (1.8) для параллельного соединения резистивных элементов получаем: где -эквивалентная проводимость. (1.32) Токи и мощности параллельно соединенных ветвей при U=const (рис. 1.20) не зависят друг от друга и определяются по формулам: (1.33) Мощность всей цепи равна : , (1.34) где rэ=1/gэ -эквивалентное сопротивление цепи. При увеличении числа параллельных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление соответственно уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность Р. Токи и мощности ранее включенных ветвей не изменяются. Рассмотрим частные случаи параллельного соединения резистивных элементов. а) параллельное соединение двух элементов (1.35) б) параллельное соединение n ветвей с одинаковыми сопротивлениями (1.36) Эквивалентное преобразование резистивноготреугольника в звезду. Под соединением треугольником (рис.1.21.а) понимается такое, при котором конец одного элемента соединяется с началом второго, конец второго- с началом третьего, а конец третьего — с началом первого. Узловые точки 1,2,3 подключаются к остальной Рис 1.21 части электрической цепи. Соединение звездой получается при объединении начал или концов сопротивлений в одну точку (рис.1.21.б). При расчете электрических цепей оказывается полезно преобразовать треугольник в звезду или совершить преобразование звезды в треугольник. Замена треугольника эквивалентной звездой должна производиться таким образом, чтобы после указанной замены токи в остальной части цепи, а также напряжения между точками 1 и 2 , 2 и 3,3 и 1 остались без изменения. С помощью законов Кирхгофа можно получить следующие формулы для определения сопротивлений эквивалентной звезды: ( 1.37) При замене резистивных элементов, соединенных звездой, эквивалентным треугольником, пользуются следующими формулами (1.38) 1.8.3. Метод контурных токов. Метод контурных токов дает возможность упростить расчет электрических цепей по сравнению с методом расчета по законам Кирхгофа за счет уменьшения числа уравнений, которые приходится решать совместно. Этот метод заключается в том, что вместо токов в ветвях определяются на основании второго закона Кирхгофа так Рис 1.22 называемые контурные токи, замыкающиеся в контурах. На рис.1.22. в виде примера показана двухконтурная цепь, в которой I11 и I22 — контурные токи. Токи в сопротивлениях r1 и r2 равны соответствующим контурным токам; ток в сопротивлении r3 являющемся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви r3 встречно. Число уравнений , записываемых для контурных токов по второму закону Кирхгофа, равно числу независимых контуров, то есть для электрической схемы с числом узлов q и числом ветвей p задача нахождения контурных токов сведется к решению системы p-q +1 уравнений. Так, в схеме рис.1.22 q = 2 p = 3; следовательно, число уравнений равно 3-2+1=2 (число уравнений независимых контуров). Положительные направления контурных токов задаются произвольно. Направление обхода каждого контура принимается обычно совпадающим с выбранным положительным направлением контурного тока; поэтому при составлении уравнения по второму закону Кирхгофа падение напряжения от заданного контурного тока в сопротивлениях, входящих в контур, берется со знаком плюс. Падение напряжения от тока смежного контура в общем сопротивлении берется со знаком минус, если контурные токи в этом сопротивлении направлены встречно, как это, например, имеет место в схеме рис.1.22., где направление обоих контурных токов выбрано по ходу часовой стрелки. Для заданной электрической схемы с двумя независимыми контурами (рис.1.22) могут быть записаны два уравнения по второму закону Кирхгофа, а именно: , , здесь (r1 + r3) и (r2 + r3) — собственные сопротивления контуров 1 и 2, r3 — общее сопротивление контуров 1 и 2. После определения контурных токов, легко найти и токи всех ветвей. I1 = I11; I2 = I22 ; I3 = I11 — I22 . Рис 1.23 Пример 1.2. Найти токи в схеме (рис. 1.23) при помощи метода контурных токов. r1 = r2 = r3 = r4 = r5 = 10 Ом; E1 = E5 = 50 В; E3 = 90 В. Решение: Выбираем направление всех контурных токов I11, I22 , I33 по часовой стрелке. Записываем систему уравнений: После подстановки численных значений: , выразим I11 и I33 через I22 : , и подставим во второе уравнение системы получаем в итоге I22 = 7А ; I11 = I33 = 6А. В соответствии с выбранным положительным направлением токов в ветвях окончательно получим: I1=I11=6A; I2=I11-I22=6-7= —1A; I3=I22=6A I4=I22-I33=1A; I5=I33=6A 1.8.4. Метод узловых напряжений. Метод узловых напряжений заключается в том, что на основании первого закона Кирхгофа определяются напряжения в узлах электрической цепи относительно некоторого базисного узла. Эти искомые напряжения называются узловыми напряжениями, причем положительное направление их указывается стрелкой от рассматриваемого узла к базисному. Напряжение на какой — либо ветви равно, очевидно, разности узловых напряжений концов данной ветви; произведение же этого напряжения на производимость данной ветви равно току в этой ветви. Таким образом, зная узловые напряжения в электрической цепи, можно найти токи в ветвях. Если принять потенциал базисного узла равным нулю, то напряжения между остальными узлами и базисным узлом будут равны также потенциалам этих узлов. Поэтому данный метод называется также методом узловых потенциалов. При наличии одной ветви с э.д.с и бесконечной проводимостью целесообразно принять за базисный узел один из узлов, к которому примыкает данная ветвь, тогда напряжение данного узла становится известным и число неизвестных сокращается на одно. Число неизвестных в методе узловых напряжений равно числу уравнений, которые надо составить для схемы по первому закону Кирхгофа. Метод узловых напряжений имеет преимущество перед методом контурных токов в том случае, когда число уравнений, записанных по первому закону Кирхгофа, меньше числа уравнений, записанных по второму закону Кирхгофа, или если (q -1) < (p - q + 1 ), или, что то же 2(q-1) На рис 1.24 в виде примера изображена электрическая схема, содержащая три узла. Примем потенциал φ3=0 (базисный узел). Составим уравнения для узлов 1 и 2 по первому закону Кирхгофа: , (1.39) Каждые из этих токов можно выразить через узловые потенциалы и э.д.с. ветвей: ; ; ; (1.40) ; . Подставив (1.40) в (1.39), сгруппировав члены при φ1 и φ2 и перенеся члены с э.д.с. в правую часть, получим (1.41) где (1.42) . Таким образом , множителем при φ1, является коэффициент G11, равный сумме проводимостей всех ветвей, сходящихся в первом узле (1.42). G12 равняется сумме проводимостей всех ветвей, соединяющих узел 1 с узлом 2, взятой со знаком минус. Ток I11 называют узловым током первого узла. Это расчетная величина, равная алгебраической сумме токов, полученной от деления э.д.с. ветвей, подходящих к узлу 1, на величину сопротивлений этих ветвей. Если э.д.с. направлена к узлу, то берется в I11 со знаком плюс, если от узла, то со знаком минус. Так же определяют G22, G21, I22 (см. 1.42).Если между какими-либо двумя узлами нет ветви, то соответствующая проводимость равна нулю. Решив систему (1.41) относительно φ1 и φ2, определим узловые напряжения цепи. Искомые токи определяют либо по закону Ома, либо по второму закону Кирхгофа для участка цепи, содержащей э.д.с. Частным случаем метода узловых напряжений является метод двух узлов. При наличии n ветвей между точками a и b применение метода узловых напряжений позволяет ограничиться составлением и решением одного уравнения для определения напряжения Uab между узлами a и b. Задавшись положительным направлением напряжения Uab (см. рис.1.25) и учитывая направления э.д.с в ветвях в соответствии с изложенным выше , получим формулу для определения напряжения Uab: (1.43.) где произведения EКgК берутся со знаком плюс , если э.д.с. действует от узла b к a и со знаком минус при обратном направлении . Токи ветвей определяются по выражению , составленному по второму закону Кирхгофа , при выбранном положительном направлении тока . (1.44.) Пользуясь методом двух узлов можно произвести замену искомых параллельных ветвей, содержащих источники э.д.с., одной эквивалентной. Участок цепи (рис.1.25,а) будет эквивалентен цепи на (рис.1.25,б), если при любых значениях тока I , подтекающего из всей остальной, не показанной на рисунке части схемы, напряжение на зажимах a и b (Uab) в обеих схемах будет одинаковым. Составив уравнения для обеих схем (1.25. а и б) и приравняв Рис 1.25 коэффициенты при Uab и токи, получим выражения для определения Eэкв и gэкв. (1.45) (1.46) . При подсчетах по формуле (1.45) следует иметь в виду следующее: если в какой-либо ветви схемы э.д.с. отсутствует, то соответствующее слагаемое в числителе (1.44) выпадает, но проводимость этой ветви в знаменателе (1.45) остается. Пример 1.3. В электрической цепи рис. 1.26 E1=40 B, E2=20 B, r01=r02=1 Oм, r1=9 Ом, r2=39 Ом, r3=10 Ом, r4=30 Ом, r5=15 Ом, U1=45 B, U2=30 B Пользуясь методом узлового напряжения, определить токи в ветвях. Решение. При указанных положительных направлениях напряжения Uаb и токов в ветвях по формуле (1.43) определим Uаb Воспользовавшись формулой (1.44), определим токи в ветвях: , 1.8.5. Метод наложения. При расчете по методу наложения ток в любой ветви электрической цепи определяется как алгебраическая сумма токов, вызываемых в данной ветви каждой из э.д.с. в отдельности, в предположении равенства нулю всех остальных э.д.с. Порядок расчета цепи методом наложения следующий. Из электрической цепи удаляют все источники э.д.с. и напряжений, кроме одного. Сохранив в электрической цепи все резистивные элементы, в том числе и внутренние сопротивления источников, производят расчет электрической цепи. Подобным образом поступают столько раз, сколько имеется в цепи источников. Результирующий ток каждой ветви определяют как алгебраическую сумму токов от всех источников. Метод наложения весьма удобен для анализа явлений происходящих в электрических цепях при изменении их параметров. 1.8.6. Метод эквивалентного генератора. Метод эквивалентного генератора используется в случае, когда необходимо найти ток, напряжение или мощность в одной ветви. При этом вся остальная часть цепи, к которой подключена данная ветвь, рассматривается в виде двухполюсника (рис. 1.27, а). Двухполюсник называют активным, если он содержит Рис 1.27 источники электрической энергии, и пассивным — в противоположном случае. Будем обозначать активный двухполюсник буквой А, а пассивный — буквой П. Различают две модификации метода эквивалентного генератора: метод эквивалентного источника напряжения и метод эквивалентного источника тока. Рассмотрим метод эквивалентного источника напряжения. Этот метод базируется на теореме Тевенина, согласно которой ток в любой ветви линейной электрической цепи не изменится, если активный двухполюсник, к которому подключена данная ветвь, заменить эквивалентным источником (генератором) напряжения. Э.д.с. этого источника равна напряжению холостого хода на зажимах разомкнутой ветви, а внутреннее сопротивление равно эквивалентному входному сопротивлению пассивного двухполюсника со стороны разомкнутой ветви (рис. 1.27, б). Опуская доказательство этой теоремы, после замены активного двухполюсника эквивалентным источником в соответствии с этой схемой имеем: (1.47) Пример 1.4. В электрической цепи (рис. 1.28, а). U=100 B, E= 40 B, r1=r4=30 Ом, r2=r3=20 Ом, r=15 Ом, r0=1 Ом Пользуясь методом зквивалентного генератора определить I и напряжение Uab. Рис 1.28 Решение. При отключенном сопротивлении r (рис.1.28б) по закону Ома и на основании второго закона Кирхгофа получим: Вам также может быть полезна лекция «11 Местная и общая реакция организма на хирургическую инфекцию». После замены источников их внутренними сопротивлениями получим схему, изображенную на рисунке 1.29в, Между точками а и b последовательно соединены три участка цепи: участок с параллельно соединенными резисторами r1 и r3; участок, на котором параллельно соединены резисторы r2 и r4, и участок, содержащий резистор ro. В соответствии с этим, внутреннее сопротивление эквивалентного генератора (сопротивление относительно точек а и b) будет: По формуле (1.47) и закону Ома получим
Поделитесь ссылкой:
Рекомендуемые лекции
- Восприятие в зависимости от частоты
- Нелинейное программирование
- Особенности управленческих решений в условиях неопределенности и риска
- 3.4 Взаимодействие пользователя с приложением
- 11 Местная и общая реакция организма на хирургическую инфекцию