Почему увеличивается сопротивление металла при нагревании
Перейти к содержимому

Почему увеличивается сопротивление металла при нагревании

  • автор:

Почему увеличивается сопротивление металла при нагревании

Как нагревание металла влияет на его свойства?

Тепло может влиять на электрические, магнитные и структурные свойства металлов. Поскольку металл имеет широкий спектр применения, различные условия подчеркивают различные атрибуты. Жесткость требуется в промышленных приложениях, в то время как низкая электрическая плотность важна в электронных приложениях.

Существует множество методов нагрева металла, которые широко используются для изменения этих свойств. Для получения желаемого результата необходимо тщательно регулировать температуру нагрева металла и скорость его охлаждения.

Ниже перечислены наиболее важные способы преобразования металлов под воздействием тепла:

Железо, никель и кобальт — это три металла, обладающие магнитными свойствами. Их называют ферромагнитными металлами. Нагревание этих металлов уменьшает их магнетизм до такой степени, что магнетизма больше нет. Температура Кюри — это температура, при которой это происходит. Эта температура составляет 626 ° по Фаренгейту для никеля, 2 012 ° по Фаренгейту для кобальта и 1 418 ° по Фаренгейту для железа.

Электрическое сопротивление металла — это показатель того, насколько сильно он препятствует прохождению электрического тока. Электроны рассеиваются при столкновении с металлической структурой, когда они проходят через металл. Электроны потребляют больше энергии и движутся быстрее, когда металл нагревается. Это вызывает дальнейшее рассеяние, что увеличивает сумму сопротивления. Термометры обычно рассчитывают температуру, измеряя разницу электрического сопротивления в куске провода.

При нагревании металл расширяется. Температура вызывает увеличение длины, площади поверхности и толщины. Тепловое расширение — это техническое название этого явления. Степень теплового расширения зависит от металла. Тепловое расширение происходит в результате того, что тепло усиливает движение атомов металла. При строительстве металлических конструкций очень важно учитывать тепловое расширение. Простой пример — строительство бытовых труб, которые должны учитывать расширение и сжатие при смене времен года.

Термическая обработка металлов

Термическая обработка — это метод изменения характеристик металла для того, чтобы сделать его более пригодным для желаемого применения. Ниже перечислены наиболее распространенные методы термической обработки:

Такие материалы, как железо, сталь, медь, латунь и серебро, обычно размягчаются путем отжига. При этом материал нагревается до определенной температуры, а затем медленно и неуклонно охлаждается. Отжиг изменяет физические и химические характеристики металла, делая его более пластичным и менее жестким. Это позволяет упростить методы резьбы, штамповки и формовки, а также облегчить резку металла. Отжиг также улучшает электропроводность.

Нормализация, также известная как нормализация, — это процесс, используемый для достижения однородности размера и состава зерен в сплавах. Металл нагревается до определенной степени, а затем охлаждается воздухом. Полученный металл не содержит примесей и обладает повышенной прочностью и твердостью. Нормализация часто используется для производства более твердой и жесткой стали, но она менее пластична, чем отжиг. Поскольку процедура улучшает этот атрибут, нормализации обычно подвергаются изделия, которые могут быть подвергнуты механической обработке.

Сталь и другие сплавы закаливают для улучшения их механических свойств. При закалке металл нагревают до высокой температуры и выдерживают до тех пор, пока часть углерода не расплавится. Затем металл гасят, то есть быстро охлаждают в масле или воде. В результате закалки получается сплав с высокой прочностью и износостойкостью. Закалка, с другой стороны, делает его более хрупким и поэтому непригодным для промышленного применения. Поверхностная закалка используется в тех случаях, когда поверхность детали должна быть достаточно твердой для предотвращения износа и разрушения, сохраняя при этом пластичность и упругость, чтобы выдерживать ударные и толчковые нагрузки.

Закалка используется для повышения пластичности стали. Незакаленная сталь очень прочна, но она слишком пористая для большинства практических применений. Отпуск — это метод низкотемпературной термообработки, используемый для достижения желаемого соотношения твердости и жесткости после закалки (нейтральной закалки, двойной закалки, науглероживания в среде, карбонитрирования или индукционной закалки). Чтобы уменьшить часть избыточной твердости, сталь нагревают до более низкой температуры. После этого металл охлаждается на воздухе, в результате чего получается более твердый и менее хрупкий материал.

fushunspecialsteel

Соответствуем требованиям и стандартам качества, Бережно доставляем товары в любую точку России

Отдел продаж: +86-731-89903933 Ваш менеджер: inforu@fushunspecialsteel.com Время работы: Пн-Вс. 9:00-18:00

Copyright © 2020-2021 fushunspecialsteel.ru All right reserved

Как объяснить увеличение сопротивления металлов при нагревании.

Удельное сопротивление металлов при нагревании увеличивается в результате увеличения скорости движения атомов в материале проводника с возрастанием температуры.

Остальные ответы

прочти здесь [ссылка заблокирована по решению администрации проекта]

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Что такое электрическое сопротивление и как оно зависит от температуры

Любой элемент или участок электрической цепи с точки зрения электромагнитного процесса, происходящего в нем прежде всего характеризуется способностью проводить ток или препятствовать прохождению тока. Это свойство элементов цепи оценивается их электрической проводимостью или величиной, обратной проводимости — электрическим сопротивлением.

Большинство электротехнических устройств состоит из токопроводящих частей, выполненных из металлических проводников, снабженных обычно изоляционным покрытием или оболочкой. Электрическое сопротивление проводника зависит от его геометрических размеров и свойств материала. Величина электрического сопротивления равна:

где l — длина проводника, м; s — площадь поперечного сечения проводника, мм2; ρ — удельное сопротивление проводника, ом·мм2/м; γ — удельная проводимость, м/ом·мм.

Удельное электрическое сопротивление

Удельное сопротивление и удельная проводимость учитывают свойства материала проводника и дают значения сопротивления и проводимости проводника длиной 1 м и площадью поперечного сечения 1 мм2.

По величине удельного сопротивления ρ все материалы можно разделить на три группы:

  • проводники — металлы и их сплавы (ρ от 0,015 до 1,2 ом·мм2/м);
  • электролиты и полупроводники (ρ от 102 до 206 ом·мм2/м);
  • диэлектрики, или изоляторы (ρ от 1010 до 2011 ом·мм2/м).

Другие устройства, наоборот, должны иметь значительные сопротивления (электрические лампы накаливания, нагрева тельные приборы и т. д.), поэтому их токоведущие элементы следует выполнять из материалов с большим удельным сопротивлением ρ, обычно представляющих собой сплавы металлов. К ним относятся, например, манганин, константан, нихром, которые имеют значения ρ от 0,1 до 1,2.

image

Зависимость электрического сопротивления от температуры

Величина электрического сопротивления зависит также от температуры проводника, которая может изменяться вследствие нагревания проводника электрическим током или вследствие изменения температуры внешней среды. При изменении температуры проводника изменяется величина его удельного сопротивления. Приведенные выше значения р для некоторых материалов справедливы при температуре.

Независимость сопротивления от температуры приближенно выражается так:

Rto — сопротивление проводника при температуре to, R20о— то же при температуре 20°С, ом; α — температурный коэффициент электрического сопротивления, показывающий относительное изменение сопротивления проводин ка при нагревании его на 1°С.

Из этого выражения величина α равна:

α = (Rto — R20о)/(R20о·(to-20°)).

Для большинства металлов и их сплавов величина α > 0, т. е. при нагревании сопротивление их увеличивается и наоборот.

Для проводков из чистых металлов значения, а колеблются в пределах от 0,0037 до 0,0065 на 1°С. Для сплавов высокого сопротивления α имеет весьма малые значения, в десятки и сотни раз меньшие, чем у проводников из чистых металлов. Так, например, для манганина α = 0,000015 на °С.

Значения α для полупроводников электролитов отрицательны, порядка 0,02. Температурный коэффициент электрического сопротивления также отрицателен и по своему абсолютному значению в десятки раз превышает α для металлов.

Зависимость сопротивления от температуры широко используется в технике для измерения температур при помощи так называемых термометров сопротивления, у которых α должен быть большим. В ряде приборов, наоборот, применяются материалы с малым значением α для того, чтобы исключить влияние колебаний температуры на показания этих приборов.

Сопротивление переменного тока

Сопротивление одного и того же проводника для переменного тока будет больше, чем для постоянного. Это объясняется явлением так называемого поверхностного эффекта, заключающегося в том, что переменный ток вытесняется от центральной части проводника к периферийным слоям. В результате плотность тока во внутренних слоях будет меньше, чем в наружных.

Таким образом, при переменном токе сечение проводника используется как бы неполностью. Однако при частоте 50 гц различие в сопротивлениях постоянному и переменному токам незначительно и практически им можно пренебречь.

image

Сопротивление проводника постоянному току называют омическим, а переменному току — активным сопротивлением. Омическое и активное сопротивления зависят от материала (внутренней структуры), геометрических размеров и температуры проводника. Кроме того, в катушках со стальным сердечником на величину активного сопротивления влияют потери в стали.К активным сопротивлениям относят электрические лампы накаливания, электрические печи сопротивления, различные нагревательные приборы, реостаты и провода, где электрическая энергия практически почти целиком превращается в тепловую.

Кроме активного сопротивления в цепях переменного тока есть индуктивное и емкостное сопротивления.

Сопротивление изоляции

Надежность работы электрической сети и аппаратуры в значительной степени зависит от качества изоляции между токоведущими частями различных фаз, а также между токоведущими частями и землей.

Качество изоляции характеризуется величиной ее сопротивления. Определением этой величины обычно ограничиваются при контрольных испытаниях сетей и установок с напряжением меньше 1000 В. Для установок более высокого напряжения дополнительно определяются электрическая прочность и диэлектрические потери.

В зависимости от состояния сети (сеть с выключенными или включенными приемниками энергии, находящаяся или не находящаяся под напряжением) применяют различные схемы включения измерительных приборов и способы подсчета величины сопротивления изоляции. Наиболее широко для этой цели используются мегаомметры и вольтметры.

image

Для чего нужен расчет проводов на нагрев

Электрическое сопротивление влияет на нагрев проводов и кабелей. Провода, соединяющие источник энергии с приемниками, должны обеспечить питание приемников с малой потерей напряжения и энергии, но при этом они не должны нагреваться проходящим по ним током выше допустимой температуры.

Превышение допустимых значений температуры приводит к повреждению изоляции проводов и, как следствие этого, к короткому замыканию, т. е. резкому повышению величины тока в цепи. Поэтому расчет проводов позволяет определить площадь их поперечного сечения, при которой потеря напряжения и нагревание проводов будут в пределах нормы.

Обычно сечение проводов и кабелей на нагрев проверяется по таблицам допустимых токовых нагрузок из ПУЭ. Если сечение не подходит по условиям нагрева, следует выбрать большее сечение, которое удовлетворяет этим требованиям.

Установки нагрева сопротивлением

Основными элементами электропечей являются электрические нагревательные элементы и теплоизоляционное устройство, предотвращающее потери тепла в окружающее пространство. В качестве материала для электрических нагревательных элементов используются жароупорные неметаллические материалы с высоким удельным сопротивлением (уголь, графит, карборунд) и металлические материалы (нихром, константан, фехраль и т. п.).

Применение материалов с высоким удельным сопротивлением ρ позволяет конструировать нагревательные элементы с большой площадью поперечного сечения и поверхности, а выбор материалов, обладающих небольшим коэффициентом расширения α, обеспечивает неизменяемость геометрических размеров элемента при нагреве.

Нагревательные элементы из материалов типа графита изготавливаются в виде стержней с трубчатым или сплошным сечением. Металлические нагревательные элементы изготовляются в виде проволоки или ленты.

Использование плавких предохранителей

Для защиты проводов электрической цепи от токов, превышающих допустимые значения, применяются автоматические выключатели и плавкие предохранители различных типов. В принципе плавкий предохранитель представляет собой участок электрической цепи с малой термической устойчивостью.

image

Плавкую вставку предохранителя обычно выполняют в виде короткого проводника малого сечения из материала с хорошей проводимостью (медь, серебро) или проводника с относительно высоким удельным сопротивлением (свинец, олово). При увеличении тока сверх значения, на которое рассчитана плавкая вставка, последняя перегорает и отключает защищаемый ею участок цепи или токоприемник.

Почему увеличивается сопротивление металла при нагревании

Удельное сопротивление металлов при нагревании увеличивается (вследствие повышения скорости движения атомов в материале проводника с возрастанием температуры). Удельное сопротивление электролитов и угля при нагревании, наоборот, уменьшается, так как у этихматериалов не только увеличивается скорость движения атомов и молекул, но и возрастает число свободных электронов и ионов в единице объема.

Удельное сопротивление некоторых сплавов (константан, манганин и др.), обладающих большим удельным сопротивлением, чем составляющие их металлы, почти не зависит от температуры. Величину, показывающую относительное изменение сопротивленияпри изменении температуры материала на 1 º, называют температурным коэффициентом электрического сопротивления. Если температурный коэффициент обозначить через а,удельное сопротивление при t0 = 20 °С через р0, то при нагреве материала до температуры г, его удельное сопротивление

P1 = Ро + α Po(t1 — to) = P0 [1 + α (t1 —t0)]. (2-26)
и соответственно R1 =R0[1+ α (t1-t0)]. (2.27)

Температурный коэффициент α для меди, алюминия, вольфрамаравен 0,004 1/град, для стали a = 0,006, для латуни a = 0,002, для фехралиa = 0,00015, для нихрома a = 0,00014, для константана α = 0,000005,для манганина α = 0,00004 1/град.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *