Усилитель тока на транзисторе схема
Перейти к содержимому

Усилитель тока на транзисторе схема

  • автор:

Транзисторные УНЧ

Транзисторные усилители мощности низкой частоты (УМЗЧ) для звуковой и аудио-аппаратуры. В разделе собраны принципиальные схемы самодельных усилителей мощности НЧ на биполярных и полевых транзисторах.

Здесь вы найдете схемы транзисторных усилителей разной сложности и с разным классом мощности:

  • низкой мощности — до 1,5 Ватт;
  • средней мощности — от 1,5 Ватт до 20 Ватт;
  • большой мощности — 25 Ватт, 50 Ватт, 100 Ватт, 200 Ватт, 300 Ватт и более.

Для самодельного аудио-комплекса или при ремонте музыкального центра можно изготовить многоканальный усилитель мощности в конфигурациях:

  • система 2.1 (сабвуфер + 2 сателлита);
  • система 5.1 (сабвуфер + 5 сателлитов);
  • стерео — два канала усиления;
  • квадро — четыре канала усиления.

На транзисторах можно без лишних сложностей собрать небольшой самодельный усилитель для наушников. Присутствуют очень простые и доступные по себестоимости конструкции усилителей, которые прекрасно подойдут для изготовления начинающими радиолюбителями.

Способ доработки усилителей класса АВ в класс Экономичный А

Способ доработки усилителей класса АВ в класс Экономичный А

Описан способ доработки транзисторных усилителей мощности НЧ класса «АВ» в класс «Экономичный А», схемы и фотографии тестов.

Простой усилитель для сабвуфера для систем начального уровня (35Вт)

Простой усилитель для сабвуфера для систем начального уровня (35Вт)

Этот усилитель предназначен для аудиосистем начального уровня, в которых вся акустика, кроме сабвуфера, работает от головного устройства. Поэтому мощность скромная. Встроенный сумматор, регулятор усиления и перестраиваемый ФНЧ позволяют подключить усилитель практически к любой магнитоле. Если у нее нет линейного выхода, сопротивление .

Схема транзисторного усилителя мощности Power Amper 250

Схема транзисторного усилителя мощности Power Amper 250

Приведена схема автомобильного усилителя мощности звука Power Amper 250. Нумерация элементов на схеме — условная. Линейный усилитель Перед усилителем мощности стоит линейный усилитель (драйвер) с коэффициентом усиления 1 . 10. Рис. 1. Схема линейного усилителя. Усилитель мощности В усилителе мощности приняты меры к снижению уровня .

Транзисторные усилители звука с нетрадиционной и необычной схемотехникой

Транзисторные усилители звука с нетрадиционной и необычной схемотехникой

Схемотехника усилителей уже прошла в своем развитии виток спирали и сейчас мы наблюдаем «ламповый ренессанс».; В соответствии с законами диалектики, которые нам так упорно вдалбливали, следом должен наступить «ренессанс транзисторный».; Сам факт этого неизбежен, ибо лампы, при всей своей красоте, уж очень неудобны. Даже дома. Но .

Применение ОУ OPA552 с транзисторами в домашнем усилителе НЧ (55Вт)

Применение ОУ OPA552 с транзисторами в домашнем усилителе НЧ (55Вт)

Схема и описание применения ОУ OPА552 в домашнем УНЧ – одного из немногих ОУ, выходной сигнал которого можно сразу послать на выходные транзисторы. Из даташита, OPA552 имеет выходное напряжение 15 Вольт с нормируемыми искажениями – 0,0005%. Этого выходного напряжения без дополнительного усиления достаточно .

Германиевые транзисторы в высококачественном усилителе мощности НЧ, схемы и описание

Германиевые транзисторы в высококачественном усилителе мощности НЧ, схемы и описание

В конце позапрошлого века немецкий химик К.А. Винклер открыл элемент, существование которого заранее было предсказано Д.И. Менделеевым. А 1 июля 1948 г. в подвале газеты «Нью-Йорк Таймс» появилась короткая заметка под заголовком «Создание транзистора». В ней сообщалось .

Стереофонический усилитель звука на германиевых транзисторах ГТ402, ГТ404, П217 (20 Watt)

Стереофонический усилитель звука на германиевых транзисторах ГТ402, ГТ404, П217 (20 Watt)

Конструирование усилителей звуковой частоты — одно из наиболее популярных направлений творчества радиолюбителей-конструкторов. Однако следует заметить, что в широкой розничной торговле и на базах Посылторга многие из крайне необходимых перспективных радиодеталей — кремниевые транзисторы .

Усилитель НЧ с двойной термостабилизацией (LME49860, 2SD2394, 2SB1565)

Усилитель НЧ с двойной термостабилизацией (LME49860, 2SD2394, 2SB1565)

Схема самодельного усилителя мощности НЧ с двойной термостабилизацией, выполнен на микросхеме LME49860 и транзисторах 2SD2394, 2SB1565 на выходе. В моей практике бывали случаи, когда выходные транзисторы УНЧ с защитой только по температуре перегревались и сгорали. Приходилось добавлять термозащиту еще и по току. Вот такая схема двойной защиты.

Экономичный УМЗЧ на транзисторах 2SC3331V, 2SA1286, 2SA928A, 2SD2058Y (13Вт)

Экономичный УМЗЧ на транзисторах 2SC3331V, 2SA1286, 2SA928A, 2SD2058Y (13Вт)

При ремонте современных усилителей мощности низкой частоты, собранных с применением интегральных микросхем, не всегда есть возможность приобрести требуемые микросхемы или найти подходящие в радиолюбительских закромах. В таком случае можно взамен неисправной микросхемы изготовить несложный в сборке .

Схема УМЗЧ на пяти транзисторах и с однополярным питанием (60W)

Схема УМЗЧ на пяти транзисторах и с однополярным питанием (60W)

Обычно, если требуется сделать УМЗЧ быстро и без лишних деталей радиолюбители обращают внимание на микросхемы -интегральные УМЗЧ. Действительно, — положительный результат сразу при минимуме деталей и времени на сборку. Однако, УМЗЧ быстро и относительно «без лишних деталей», можно сделать .

Простейшие усилители низкой частоты на транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10. 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3. 12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Простейшие усилители низкой частоты

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20. 30 кОм и переменный сопротивлением 100. 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Простейшие усилители низкой частоты

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Простейшие усилители низкой частоты

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Простейшие усилители низкой частоты

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Простейшие усилители низкой частоты

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 2. 4 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Простейшие усилители низкой частоты

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,5. 0,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 50. 60% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Простейшие усилители низкой частоты

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (30. 50) к 1. Резистор R1 должен быть 0,1. 2 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Простейшие усилители низкой частоты

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Простейшие усилители низкой частоты

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Простейшие усилители низкой частоты

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2. 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадные УНЧ с непосредственной связью между каскадами

Примерами УНЧ с непосредственными связями и минимальным подбором режима работы являются схемы, приведенные на рис. 11 — 14. Они имеют высокий коэффициент усиления и хорошую стабильность.

Простейшие усилители низкой частоты

Рис. 11. Простой двухкаскадный УНЧ для микрофона (низкий уровень шумов, высокий КУ).

Простейшие усилители низкой частоты

Рис. 12. Двухкаскадный усилитель низкой частоты на транзисторах КТ315.

Простейшие усилители низкой частоты

Рис. 13. Двухкаскадный усилитель низкой частоты на транзисторах КТ315 — вариант 2.

Микрофонный усилитель (рис. 11) характеризуется низким уровнем собственных шумов и высоким коэффициентом усиления [МК 5/83-XIV]. В качестве микрофона ВМ1 использован микрофон электродинамического типа.

В роли микрофона может выступать и телефонный капсюль. Стабилизация рабочей точки (начального смещения на базе входного транзистора) усилителей на рис. 11 — 13 осуществляется за счет падения напряжения на эмиттерном сопротивлении второго каскада усиления.

Простейшие усилители низкой частоты

Рис. 14. Двухкаскадный УНЧ с полевым транзистором.

Усилитель (рис. 14), имеющий высокое входное сопротивление (порядка 1 МОм), выполнен на полевом транзисторе VT1 (истоковый повторитель) и биполярном — VT2 (с общим).

Каскадный усилитель низкой частоты на полевых транзисторах, также имеющий высокое входное сопротивление, показан на рис. 15.

Простейшие усилители низкой частоты

Рис. 15. схема простого двухкаскадного УНЧ на двух полевых транзисторах.

Схемы УНЧ для работы с низкоОмной нагрузкой

Типовые УНЧ, предназначенные для работы на низкоомную нагрузку и имеющие выходную мощность десятки мВт и выше, изображены на рис. 16, 17.

Простейшие усилители низкой частоты

Рис. 16. Простой УНЧ для работы с включением нагрузки с низким сопротивлением.

Электродинамическая головка ВА1 может быть подключена к выходу усилителя, как показано на рис. 16, либо в диагональ моста (рис. 17). Если источник питания выполнен из двух последовательно соединенных батарей (аккумуляторов), правый по схеме вывод головки ВА1 может быть подключен к их средней точки напрямую, без конденсаторов СЗ, С4.

Простейшие усилители низкой частоты

Рис. 17. Схема усилителя низкой частоты с включением низкоомной нагрузки в диагональ моста.

Если вам нужна то такой усилитель можно собрать даже на одной лампе, смотрите у нас на сайте по электронике в соответствующем разделе.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Исправления в публикации: на рис. 16 и 17 вместо диода Д9 установлена цепочка из диодов.

  • Это интересно
  • Я рекомендую
  • Твитнуть
  • Поделиться

Усилители постоянного тока — назначение, виды, схемы и принцип действия

Основная функция усилителя — генерировать выходной сигнал, который является копией входного, но с более высоким уровнем сигнала. Усилители могут быть разработаны специально для усиления по напряжению, мощности или току. Чаще всего усилитель используется в качестве устройства усиления по напряжению.

Ниже на рисунке показана типичная схема усилителя, где входной сигнал Vi подается на его входную клемму, а выходное напряжение Vo генерируется на его выходе. Коэффициент усиления по напряжению усилителя может быть выражен как отношения выходного напряжения к входному.

Схема усилителя

Например, усилитель с коэффициентом усиления по напряжению 100 будет преобразовывать входной сигнал 50 мкВ в сигнал 5 мВ.

Во многих приложениях уровень постоянного тока на входе или выходе не важен. Скорее это вариационная или переменная часть сигнала, которая содержит информацию, подлежащую обработке.

Усилители, предназначенные только для передачи вариационных частей входного сигнала, называются усилителями со связью по переменному току, тогда как усилители, предназначенные для усиления и передачи постоянного тока, а также уровней вариаций, называются усилителями с прямой связью.

Электронные усилители представляют собой сложные и дорогие элементы электронного оборудования, включающие как линейные, так и нелинейные компоненты.

Суммарное назначение этих устройств (кроме подавления посторонних шумов) состоит в том, чтобы преобразовать слабый сигнал в сильную версию того же сигнала с минимальными искажениями.

Чем ближе усилитель приближается к идеалу отсутствия искажений в широкой полосе частот, тем сложнее и дороже он должен быть.

Современные усилители высокой точности очень близко подходят к достижению идеала в довольно широком диапазоне частот. Это сделало возможным точное усиление сигналов, ранее записанных с низкой точностью или вообще не записанных.

Так, например, детальный анализ таких данных, как электроэнцефалограммы, электрокардиограммы, сейсмограммы, записи космических лучей, во многом стал реальностью благодаря развитию современной записывающей и усиливающей аппаратуры.

Усилители постоянного тока

Усилители постоянного тока, как может показаться из названия, сами по себе ток не усиливают, то есть они не генерируют никакой дополнительной мощности. Данные электронные устройства служат для управления электрическими колебаниями в определенном диапазоне частот начиная с 0 Гц.

Но посмотрев на форму сигналов на входе и выходе усилителя постоянного тока, можно однозначно сказать — на выходе имеется усиленный входной сигнал, однако источники энергии для входного и выходного сигналов — индивидуальные.

По принципу действия усилители постоянного тока подразделяются на усилители прямого усиления и усилители с преобразованием.

Усилители постоянного тока с преобразованием преобразуют ток постоянный — в переменный, затем он усиливается и выпрямляется. Это называется усилением сигнала с модуляцией и демодуляцией — МДМ.

Транзисторы

Схемы усилителей прямого усиления не содержат реактивных элементов, таких как катушки индуктивности и конденсаторы, сопротивление которых зависит от частоты.

Вместо этого существует непосредственная гальваническая связь выхода (коллектора или анода) усилительного элемента одного каскада с входом (базой или сеткой) очередного каскада.

По этой причине усилитель прямого усиления способен пропускать (усиливать) даже постоянный ток. Такие схемы популярны и в акустике.

Усилитель постоянного тока в акустике

Однако непосредственная гальваническая связь хотя и передает очень точно между каскадами перепады напряжения и медленные изменения тока, такое решение сопряжено с нестабильностью работы усилителя, с затруднением установления режима работы усилительного элемента.

Когда напряжение источников питания немного изменяется, или изменяется режим работы усилительных элементов, либо немного плывут их параметры, — тут же наблюдаются медленные изменения токов в схеме, которые по гальванически связанным цепям попадают во входной сигнал и соответствующим образом искажают форму сигнала на выходе.

Зачастую эти паразитные изменения на выходе схожи по размаху с рабочими изменениями, вызываемыми нормальным входным сигналом.

Дрейф нуля

Искажения выходного напряжения могут быть вызваны различными факторами. Прежде всего — внутренними процессами в элементах схемы.

Нестабильное напряжение источников питания, нестабильные параметры пассивных и активных элементов схемы, особенно под действием перепадов температуры и т. д. Они могут быть вовсе не связаны с входным напряжением.

Изменения выходного напряжения вызванные данными факторами именуют дрейфом нуля усилителя. Максимальное изменение выходного напряжения в отсутствие входного сигнала усилителя (когда вход замкнут) за определенный временной промежуток, называется абсолютным дрейфом.

Напряжение дрейфа, приведенное ко входу равно отношению абсолютного дрейфа к коэффициенту усиления данного усилителя. Это напряжение определяет чувствительность усилителя, так как вносит ограничение в минимально различимый входной сигнал.

Чтобы усилитель работал нормально, напряжение дрейфа не должно быть больше заранее определенного минимального напряжения усиливаемого сигнала, который подается на его вход.

В случае если дрейф выхода окажется того же порядка или будет превышать входной сигнал, искажения превысят допустимую норму для усилителя, и его рабочая точка окажется смещенной за пределы адекватной рабочей области характеристик усилителя («дрейф нуля»).

Для снижения дрейфа нуля прибегают к следующим приемам.

Во-первых, все источники напряжения и тока, питающие каскады усилителя, делают стабилизированными. Во-вторых, используют глубокую отрицательную обратную связь.

В-третьих, применяют схемы компенсации температурного дрейфа путем добавления нелинейных элементов, чьи параметры зависят от температуры.

В-четвертых, используют балансирующие мостовые схемы. И наконец, постоянный ток преобразуют в переменный и затем усиливают переменный ток и выпрямляют.

При создании схемы усилителя постоянного тока очень важно согласовать потенциалы на входе усилителя, в точках сопряжения его каскадов, а также на нагрузочном выходе. Также необходимо обеспечить стабильность работы каскадов при различных режимах и даже в условиях плавающих параметров схемы.

Схема прямого усиления

Усилители постоянного тока бывают однотактными и двухтактными. Однотактные схемы прямого усиления предполагают непосредственную подачу выходного сигнала с одного элемента — на вход следующего. На вход следующего транзистора вместе с выходным сигналом от первого элемента (транзистора) подается коллекторное напряжение первого.

Тут должны быть согласованы потенциалы коллектора первого и базы второго транзистора, для чего коллекторное напряжение первого транзистора компенсируют при помощи резистора.

Резистор добавляют также в цепь эмиттера второго транзистора, чтобы сместить его напряжение база-эмиттер.

Потенциалы на коллекторах транзисторов следующих каскадов также должны быть высокими, что тоже достигается применением согласующих резисторов.

Параллельный балансный каскад

В двухтактном параллельном балансном каскаде резисторы коллекторных цепей и внутренние сопротивления транзисторов образуют собой четырехплечевой мост, на одну из диагоналей которого (между цепями коллектор-эмиттер) подается напряжение питания, а к другой (между коллекторами) — присоединяется нагрузка. Сигнал который требуется усилить прикладывается к базам двух транзисторов.

При равенстве коллекторных резисторов и полностью одинаковых транзисторах, разность потенциалов между коллекторами, в отсутствие входного сигнала, равна нулю.

Если входной сигнал не равен нулю, то на коллекторах будут приращения потенциалов равные по модулю, но противоположные по знаку.

На нагрузке между коллекторами появится переменный ток по форме повторяющий входной сигнал, но большей амплитуды.

Такие каскады часто применяются в качестве первичных каскадов многокаскадных усилителей либо в качестве выходных каскадов для получения симметричного напряжения и тока.

Достоинство данных решений в том, что влияние температуры на оба плеча одинаково изменяет их характеристики и напряжение на выходе не плывет.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Усилители постоянного тока на транзисторах

Назначение усилителей постоянного тока на транзисторах то же, что и подобных усилителей, выполненных на электронных лампах.

Рассмотрим особенности построения схем усилителей постоянного тока на транзисторах (УПТ), связанные с обеспечением их работы и уменьшением нестабильности (дрейфа) выходного тока при отсутствии входного сигнала. Последнее обстоятельство в транзисторных УПТ приобретает особо важное значение вследствие резко выраженного влияния на параметры транзисторов изменений окружающей температуры.

Отклонения коллекторного тока ΔI к зависят от изменений обратного тока коллектора ΔI к.о , напряжения смещения ΔU бэ , коэффициента усиления по току Δβ и сопротивления коллекторного перехода Δr к (сопротивление r к влияет на коэффициент передачи базового тока, а значит, и на усилительные свойства каскада).

Наличие отрицательной обратной связи не позволяет получить от одного каскада значительного усиления. Поэтому УПТ обычно бывают многокаскадными и, кроме того, в них используется взаимная компенсация дрейфа.

На рис. 190, а приведена схема двухкаскадного усилителя постоянного тока на транзисторах . Делитель R 4 —R 5 предотвращает прохождение постоянного тока через источник сигнала — генератор с э. д. с. Eг. Если падения напряжений на сопротивлениях R 2 и R 5 равны между собой, то потенциалы в точках а и б одинаковы и ток на участке аб отсутствует.

Рис. 190. Схемы транзисторных усилителей постоянного тока: а — двухкаскадная; б — двухтактного, параллельно-балластного каскада.

Потенциалы коллектора и эмиттера транзистора Т 2 должны быть больше соответствующих потенциалов транзистора T 1 . Это возможно при выполнении условии R к >R’ к и R’ э >R э . Однако увеличение сопротивления R’ э при одновременном уменьшении сопротивления R’ к приведет к снижению усиления, так как коэффициент усиления каскада УПТ определяется приближенным равенством

Следует заметить, что в последнем каскаде усилителя постоянного тока на транзисторах , где сопротивление R к минимально, должно быть обеспечено усиление, т. е. должно выполняться условие R к >R э .

В схему введены балластные сопротивления R 3 и R’ 3 , с помощью которых устанавливаются необходимые потенциалы эмиттеров обоих транзисторов при соответствующих значениях сопротивлений R э и R’ э , обеспечивающих заданное усиление. Делитель, состоящий из сопротивлений R 6 —R 7 и диода Д 2 , служит для компенсации начального напряжения на нагрузке при отсутствии сигнала на входе усилителя и обеспечивает в режиме покоя равенство потенциалов в точках в и г.

С повышением температуры увеличивается коллекторный ток транзистора T 1 , падение напряжения на сопротивлении R к возрастает и на входе второго каскада появляется сигнал положительной полярности, который запирает транзистор Т 2 . При этом увеличения коллекторного тока второго транзистора, вследствие повышения температуры, не наблюдается, т. е. происходит взаимная компенсация температурного дрейфа коллекторного тока.

Диод Д 1 вместе с переменным сопротивлением R п шунтируют сопротивление R к . С повышением температуры сопротивление этого диода и шунтирующее действие его увеличиваются. Это уменьшает увеличение выходного напряжения на транзисторе T 1 , появляющееся вследствие температурных влияний. С понижением температуры шунтирующее действие диода Д 1 уменьшается. В этом случае диод Д 2 в плече делителя R 6 -R 7 компенсирует изменение напряжения на коллекторе транзистора Т 2 (ΔU к ), которое может появиться из-за неполной взаимной температурной компенсации между транзисторами Т 1 и Т 2 . Кроме диодов для термокомпенсации можно использовать также и термисторы.

Широкое распространение находят двухтактные, параллельно-балластные транзисторные каскады УПТ ( рис. 190, б ). Двухтактные усилители постоянного тока на транзисторах обладают большим коэффициентом усиления, чем однотактные, и большей стабильностью выходного напряжения при отсутствии сигнала. При идентичности транзисторов Т 1 и T 2 и равенстве их коллекторных сопротивлений (R к = R к ) будут одинаковы токи и потенциалы коллекторов обоих транзисторов, а следовательно, U вых = 0. Практически в схеме всегда имеется некоторая асимметрия, что приводит к появлению на выходе напряжения U вых ≠ 0. Поэтому в схему введено переменное сопротивление R 0 , изменяя положение движка которого, можно добиться, чтобы при разных коллекторных токах I к и I’ к (при наличии асимметрии) выполнялось равенство I к (R к + R п ) = I’ к (R к + R’ п ) и тогда U вых будет равно нулю.

Дрейф выходного напряжения в рассматриваемой схеме не будет проявляться только в том случае, если изменения токов коллекторов в транзисторах Т 1 и T 2 из-за температурных влияний будут одинаковы, что практически не всегда имеет место. Поэтому, изменяя величины R 2 и R’ 2 , удается обеспечить равенство изменений этих токов в сравнительно широком температурном диапазоне.

Если на вход поступает сигнал полярности, указанной на рис. 190, б , то ток I к коллектора транзистора Т 1 уменьшится, а ток коллектора транзистора Т 2 увеличится. На выходе появится сигнал (плюс на коллекторе Т 2 и минус на коллекторе T 1 ). При изменении полярности входного сигнала меняется полярность сигнала на выходе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *