Как найти хс в электротехнике
Перейти к содержимому

Как найти хс в электротехнике

  • автор:

Калькулятор электрического сопротивления ёмкости

При подключении конденсатора в цепь переменного тока возникает совокупность процессов заряда и разряда ёмкости, т.е. накопление и отдача энергии электрическим полем между обкладками. По мере заряда ёмкости, ток через нее уменьшается. Конденсатор будет заряжаться до максимального значения, пока ток не сменит направление на противоположное. В моменты максимального значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода. Ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току Xc.

formula1

X C — сопротивление, Ом; f — частота, Гц; C — ёмкость, Ф.

Сопротивление конденсатора переменному току это отношение действующих значений напряжения к току. Оно обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора. Фазы кривых тока и напряжения на конденсаторе смещены на 90 градусов, при этом ток опережает напряжение.

diagram

Расчет электрического сопротивления ёмкости

Для расчета введите значение ёмкости конденсатора и частоту переменного тока

Обнаружили ошибку или неточность в работе калькулятора? Сообщите нам об этом.
Соблюдайте технику безопасности во время работы с электронными компонентами!

    • Магазины и оптовые отделы
    • Видео
    • Новости
    • Каталог брендов
    • Каталоги автозапчастей
    • Акции и спецпредложения
    • Калькуляторы
    • Обратная связь
    • История компании
    • «ЧИП и ДИП» сегодня
    • 28 лет в сфере e-com
    • Контактная информация
    • Реквизиты АО «ЧИП и ДИП»
    • Дистрибьюция
    • Планируете стать поставщиком?
    • Работа в «ЧИП и ДИП»
    • Как сделать заказ
    • Способы доставки
    • Способы оплаты
    • Состояние заказа
    • Редактирование заказа
    • Возврат и обмен товара
    • Для юридических лиц

    Резонанс напряжений

    Если в цепь переменного тока включены последовательно катушка индуктивности и конденсатор, то они по-своему воздействуют на генератор, питающий цепь, и на фазовые соотношения между током и напряжением .

    Катушка индуктивности вносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, наоборот, заставляет напряжение в цепи отставать по фазе от тока на четверть периода. Таким образом, действие индуктивного сопротивления на сдвиг фаз между током и напряжением в цепи противоположно действию емкостного сопротивления.

    Это приводит к тому, что общий сдвиг фаз между током и напряжением в цепи зависит от соотношения величин индуктивного и емкостного сопротивлений.

    Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный характер, т. е. напряжение отстает по фазе от тока. Если же, наоборот, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, следовательно, цепь носит индуктивный характер.

    Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется путем сложения индуктивного сопротивления катушки XL и емкостного сопротивления конденсатора ХС.

    Но так как действие этих сопротивлений в цепи противоположно, то одному из них, а именно Хс приписывается знак минус, и общее реактивное сопротивление определяется по формуле:

    Применив к этой цепи закон Ома, получим:

    Формулу эту можно преобразовать следующим образом:

    В полученном равенстве I XL — действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а I ХС — действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

    Таким образом, общее напряжение цепи, состоящей из последовательного соединения катушки и конденсатора, можно рассматривать как состоящее из двух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

    Мы считали, что такая цепь не обладает активным сопротивлением. Однако в тех случаях, когда активное сопротивление цепи не настолько уже мало, чтобы им можно было пренебречь, общее сопротивление цепи определяется следующей формулой:

    где R — общее активное сопротивление цепи, XLС — ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать:

    Резонанс напряжений

    Резонанс напряжений в цепи переменного тока

    Индуктивное и емкостное сопротивления, соединенные последовательно, вызывают в цепи переменного тока меньший сдвиг фаз между током и напряжением, чем если бы они были включены в цепь по отдельности.

    Иначе говоря, от одновременного действия этих двух различных по своему характеру реактивных сопротивлений в цепи происходит компенсация (взаимное уничтожение) сдвига фаз.

    Полная компенсация, т. е. полное уничтожение сдвига фаз между током и напряжением в такой цепи, наступит тогда, когда индуктивное сопротивление окажется равным емкостному сопротивлению цепи, т. е. когда XL = ХС или, что то же, когда ω L = 1 / ωС.

    Цепь в этом случае будет вести себя как чисто активное сопротивление, т. е. как будто в ней нет ни катушки, ни конденсатора. Величина этого сопротивления определится суммой активных сопротивлений катушки и соединительных проводов. При этом действующее значение тока в цепи будет наибольшим и определится формулой закона Ома I = U / R , где вместо Z теперь поставлено R.

    Одновременно с этим действующие напряжения как на катушке UL = I XL так и на конденсаторе Uc = I ХС окажутся равными и будут максимально большой величины. При малом активном сопротивлении цепи эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи. Это интересное явление называется в электротехнике резонансом напряжений .

    На рис. 1 приведены кривые напряжений, тока и мощности при резонансе напряжений в цепи.

    График тока напряжений и мощности при резонансе напряжений

    График тока напряжений и мощности при резонансе напряжений

    Следует твердо помнить, что сопротивления XL и ХС являются переменными, зависящими от частоты тока, и стоит хотя бы немного изменить частоту его, например, увеличить, как XL = ω L возрастет, а ХС = = 1 / ωС уменьшится, и тем самым в цепи сразу нарушится резонанс напряжений, при этом наряду с активным сопротивлением в цепи появится и реактивное. То же самое произойдет, если изменить величину индуктивности или емкости цепи.

    При резонансе напряжений мощность источника тока будет затрачиваться только на преодоление активного сопротивления цепи, т. е. на нагрев проводников.

    Действительно, в цепи с одной катушкой индуктивности происходит колебание энергии, т. е. периодический переход энергии из генератора в магнитное поле катушки. В цепи с конденсатором происходит то же самое, но за счет энергии электрического поля конденсатора. В цепи же с конденсатором и катушкой индуктивности при резонансе напряжений (XL = ХС) энергия, раз запасенная цепью, периодически переходит из катушки в конденсатор и обратно и на долю источника тока выпадает только расход энергии, необходимый для преодоления активного сопротивления цепи. Таким образом, обмен энергии происходит между конденсатором и катушкой почти без участия генератора.

    Стоит только нарушить резонанс напряжений в цени, как энергия магнитного поля катушки станет не равной энергии электрического поля конденсатора, и в процессе обмена энергии между этими полями появится избыток энергии, который периодически будет то поступать из источника в цепь, то возвращаться ему обратно цепью.

    Явление это очень сходно с тем, что происходит в часовом механизме. Маятник часов мог бы непрерывно колебаться и без помощи пружины (или груза в часах-ходиках), если бы не силы трения, тормозящие его движение.

    Пружина же, сообщая маятнику в нужный момент часть своей энергии, помогает ему преодолеть силы трения, чем и достигается непрерывность колебаний.

    Подобно этому и в электрической цепи, при явлении резонанса в ней, источник тока расходует свою энергию только на преодоление активного сопротивления цепи, тем самым поддерживая в ней колебательный процесс.

    Итак, мы приходим к выводу, что цепь переменного тока, состоящая из генератора и последовательно соединенных катушки индуктивности и конденсатора, при определенных условиях XL = ХС превращается в колебательную систему . Такая цепь получила название колебательного контура.

    Из равенства XL = ХС можно определить значения частоты генератора, при которой наступает явление резонанса напряжений:

    Значение емкости и индуктивности цепи, при которых наступает резонанс напряжений :

    Таким образом, изменяя любую из этих трех величин ( f рез, L и С), можно вызвать в цепи резонанс напряжений, т. е. превратить цепь в колебательный контур.

    Пример полезного применения резонанса напряжений : входной контур приемника настраивается конденсатором переменной емкости (или вариометром) таким образом, что в нем возникает резонанс напряжений. Этим достигается необходимое для нормальной работы приемника большое повышение напряжения на катушке по сравнению с напряжением в цепи, созданным антенной.

    Наряду с полезным использованием явления резонанса напряжений в электротехнике технике часто бывают случаи, когда резонанс напряжений вреден. Большое повышение напряжения на отдельных участках цепи (на катушке или на конденсаторе) по сравнению с напряжением генератора может привести к порче отдельных деталей и измерительных приборов.

    Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

    Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

    Не пропустите обновления, подпишитесь на наши соцсети:

    Реактивное сопротивление XL и XC

    Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

    Элементы, обладающие реактивным сопротивлением, называют реактивными.

    Реактивное сопротивление катушки индуктивности

    При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
    При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

    В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

    При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

    Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

    Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
    Отсюда выразим синусоидальный ток .

    Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
    Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
    В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
    Для среднеквадратичных значений U и I в таком случае можно записать .

    В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

    Реактивное сопротивлениие индуктивностей называют индуктивным.

    Реактивное сопротивление конденсатора

    Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

    В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

    В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

    Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

    Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
    Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
    Тогда для синусоидального напряжения u = Uampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

    Отсюда выразим соотношение среднеквадратичных значений .

    Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

    Реактивное сопротивление конденсатора называют ёмкостным.

    Предлагаем Вам рассмотреть непосредственно связанные с данным материалом статьи:
    Что такое коэффициент мощности — Cos(φ)?

    Как найти хс в электротехнике

    Удобные методы онлайн-расчета сопротивления емкости C и индуктивности L переменному току с частотой F.

    [Xc — сопротивление конденсатора переменному току]

    Формула для расчета: Xc = 1/(2*pi*F*C), где Xc — сопротивление конденсатора переменному току в Омах, F — частота в Герцах, C — емкость в Фарадах. В таблице ниже расчет ведется по той же формуле, но в более удобных единицах — Гц, мкФ, Ом. В качестве исходных параметров можно использовать числа с плавающей запятой (запятая указывается в виде точки).

    [Xl — сопротивление индуктивности переменному току]

    Формула для расчета: Xl = 2*pi*F*L, где Xl — сопротивление индуктивности переменному току в Омах, F — частота в Герцах, L — индуктивность в Генри. В таблице ниже расчет ведется по той же формуле, но в более удобных единицах — Гц, мкГн, Ом. В качестве исходных параметров можно использовать числа с плавающей запятой (запятая указывается в виде точки).

    [Общие замечания по использованию калькуляторов]

    1. 1 микрофарад (мкф) = 1000000 пикофарад (пФ). 1 фарад (Ф) = 1000000 микрофарад (мкФ) = 10 12 пикофарад (пФ).

    2. Десятичные значения с точкой нужно вводить с точкой, а не с запятой, иначе скрипт будет выдавать «infinity». Например, емкость 50 пФ следует ввести как 0.00005.

    1. Микрофарад, Электрическая ёмкость site:convertworld.com . Очень удобный калькулятор для преобразования физических величин.
    2. Расчёт резонансной частоты колебательного контура.
    3. Расчет начальной магнитной проницаемости ферритовых колец по пробной обмотке.
    4. Расчет дросселей на резисторах МЛТ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *