Как устраиваются фундаменты под железобетонные колонны каркаса в температурных швах
Перейти к содержимому

Как устраиваются фундаменты под железобетонные колонны каркаса в температурных швах

  • автор:

4.2.1. Железобетонные каркасы одноэтажных зданий

В современном индустриальном строительстве применяют в основном сборные железобетонные каркасы, конструктивные элементы которых типизированы.

Фундаменты

Фундаменты устраивают под отдельные опоры (колонны каркасных зданий, столбы), а также под стены бесподвальных легких зданий. Это наиболее деше­вый и наименее трудоемкий вид фундаментов – он в 1,5-4 раза дешевле ленточных.

Под колонны одноэтажных промышленных зданий применяют, в основном, монолитные фундаменты, со­стоящие из подколенника и одно-, двух- или трехступен­чатой плитной части (рис. 9.18).

Высота фундаментов принимается 1,5 м и в пределах 1,8-4,2 м с интервалом 0,6 м. Размеры уступов в плане и по высоте — 0,3 или 0,45 м. Все размеры в плане унифи­цированы и кратны модулю 0,3 м. Размеры конкретного фундамента выбирают в зависимости от нагрузки, пере­даваемой колонной (колоннами), характеристик грунта и решений части здания ниже нулевой отметки.

Фундамент под спаренные колонны в местах темпе­ратурных швов и примыканий пролетов устраивают об­щим (рис. 9.20), кроме случаев, когда необходим осадоч­ный шов.

Обрез фундаментов располагается чаще всего под железобетонные колонны на отметке минус 0,150, а под стальные — минус 0,300 и ниже.

Для установки железобетонных колонн в теле под- колонника фундамента предусматривают углубление — стакан. Зазор между гранями колонны и стенкой ста­кана принят по верху 75 мм, а по низу — 50 мм (рис. 9.18 г). При стальных колоннах в подколонник заклады­ваются анкерные болты для крепления колонн к фунда­менту.

Рис. 9.18. Монолитные столбчатые фундаменты под сборные железобетонные ко­лонны промышленных зданий: а — одноступенчатый; б — двухступенчатый; в — трехступенчатый; г — подколонник; д — вид сверху

Сборные столбчатые фундаменты, в зависимости от размеров, могут быть цельными из одного блока, из блока и плиты или из нескольких различных блоков и плит (рис. 9.26). Цельные фундаменты сравнительно невелики по размерам и массе. Применение ребристых и пустот­ных элементов позволяет уменьшать материалоемкость сборных столбчатых фундаментов.

Плиты (блоки) укладывают на подготовку толщиной порядка 100 мм — щебеночную пли песчаную при сухих грунтах и бетонную — при влажных. Элементы друг на дру­га укладывают на растворе и соединяют сваркой заклад­ных деталей, выпусков, анкеров и т.п.

Рис. 9.26. Сборные столбчатые фундаменты под колонны: а-в — одноблочные подколонники; г — подколонник на плите; д — трехплитный; е — подколонник на плитах в два ряда; ж — под­колонник на дырчатых плитах в два ряда; з — подколонник на двух ребристых плитах; и — ребристый подколонник на трех плитах; к — высокий (пенькового типа) подколонник на блоке и трех пли­тах; л — подколонник с заглублением в две плиты; м — ребристый; н — пустотный подколонник на плите; о — из трех пустотных эле­ментов с высоким подколонником

Для опирания наружных и внутренних самонесущих стен применяют фундаментные балки (рис. 9.19), кото­рые передают нагрузку от веса стен на фундаменты. При опирании фундаментных балок на уступах фундаментов рекомендуется устройство приливов (бетонных столби­ков), ширину которых принимают не менее максимальной ширины балки, а верх на отметке минус 0,360 или 0,660 — соответственно, при высоте балок 300 и 600 мм.

При замерзании пучинистых грунтов в фундаментных балках могут возникать деформации. Во избежание это­го и для предохранения пола от промерзания вдоль стен с боков и снизу балок засыпают шлак (рис. 9.20 в).

Рис. 9.20. Расположение фундаментных балок:

а — вид сбоку; б — план; в — сечение; 1 — фундаментная балка; 2 — прилив или бетонный столбик; 3 — колонна рядовая; 4 — колонна у температурного шва; 5 — колонна примыкающего пролета; 6 — стена; 7 — засыпка шлаком; 8 — отмостка

Рис. 9.19. Фундаментные балки: а — сечения балок для зданий с шагом колонн 6 м; б — то же, 12 м; в — опирание балок на фундамент

Колонны каркаса. Конструкция сборных железобетонных колонн зависит от объемно-планировочного решения промышленного здания и наличия в нем того или иного вида подъемно-транспортного оборудования определенной грузоподъемности. В связи с этим сборные железобетонные колонны подразделяют на две группы. Колонны, относящиеся к первой группе, предназначены для зданий без мостовых кранов, в бескрановых цехах и в цехах, оснащенных подвесным подъемно-транспортным оборудованием. Колонны, относящиеся ко второй группе, применяют в цехах, оборудованных мостовыми кранами.

По конструктивному решению колонны разделяют на одноветвевые и двухветвевые, по местоположению в здании – на крайние, средние и рас­полагаемые у торцевых стен.

Типовые колонны запроектированы под нагрузки: от покрытия и подвесного подъемно-транспортного оборудования в виде монорельсов или подвесных кранов грузоподъемностью до 5 т и от покрытия и мостовых кранов грузоподъемностью до 50 т. Разработаны решения сборных железобетонных двухветвевых колонн под краны грузоподъемностью 75/20, 100/20 и 125/20 т для пролетов 24, 30 и 36 м при шаге колонн 6 и 12 м. Градация колонн по высоте установлена кратной модулю 600 мм.

Для зданий без мостовых кранов, имеющих высоту от пола до низа несущих конструкций покрытия до 9,6 м, применяют колонны сечением 400х400, 500х500 и 600×500 мм (рис. 24.1, а). Средние колонны сечением 400х400 мм в месте опирания несущих конструкций покрытия имеют со стороны двух боковых граней консоли. Выбор сечения колонны зависит от размеров пролета и их числа, величины шага колонн, наличия подстропильных конструкций, подвесного транспорта и конструктивного решения покрытия.

Рис. 24.1. Сборные железобетонные колонны: а – одноветвевые для бескрановых зданий; б – одноветвевые для крановых зданий; в – двухветвевые для крановых зданий; г – расположение закладных стальных деталей в колонне: 1 – стальной лист с анкерами для крепления сборных железобетонных балок или ферм; 2 – то же, для крепления подкрановых балок; 3 – стальной лист для крепления подкрановых балок к колоннам поверху, 4 – закладные детали для крепления вертикальных связей; 5 – закладная деталь для крепления стеновых панелей. 6 – отверстие для строповки; 7 – опорный столик

В тех случаях, когда бескрановое здание должно иметь высоту более 9,6 м, можно использовать колонны для зданий с мостовыми кранами. Такое решение позволяет расширить область применения типовых колонн без увеличения числа их типоразмеров. Для зданий, оборудованных мостовыми кранами грузоподъемностью до 20 т, применяют одноветвевые колонны прямоугольного сечения (рис. 24.1, б).

Колонна для здания, оборудуемого мостовыми кранами, состоит из надкрановой и подкрановой частей. Надкрановая часть служит для опирания несущей конструкции покрытия и называется надколонником. Подкрановая часть воспринимает нагрузки от надколонника, а также от подкрановых балок, которые опирают на консоли колонн, и передает их на фундамент. Крайние колонны имеют одностороннюю консоль, средние – двухсторонние консоли.

Сечения крайних и средних колонн при шаге 6 м – 400×600 и 400х800 мм, а при шаге 12 м – 500х800 мм. При кранах грузоподъемностью до 30 т и высоте здания более 10,8 м применяют двухветвевые колонны, которые по расходу материала экономичнее одноветвевых. Они бывают ступенчатые и ступенчато-консольные (рис. 24.1, в): первые предназначены для крайних рядов, вторые – для средних.

Высота типовых двухветвевых колонн 10,8-18 м. Колонны высотой 16,2 и 18 м применяют в тех случаях, когда это целесообразно по эксплуатационным условиям и обосновано экономическими соображениями. Просветы между ветвями используют для пропуска санитарно-технических и технологических коммуникаций. В отдельных случаях можно применять железобетонные колонны при кранах грузоподъемностью свыше 50 т. В таких двухветвевых колоннах устраивают проходы для рабочих, которые располагают на уровне подкрановых путей.

Величина заглубления колонн ниже нулевой отметки зависит от вида и высоты колонн, грузоподъемности кранового оборудования и наличия помещений или приямков, располагаемых ниже уровня пола. Величина заглубления колонн в зданиях с подвесным транспортом и без него – 0,9 м; колонн прямоугольного сечения, применяемых в зданиях с мостовыми кранами, – 1 м; двухветвевых колонн высотой 10,8 м – 1,05 м и таких же колонн высотой 12,6-18 м – 1,35 м; двухветвевых колонн при кранах грузоподъемностью более 50 т – 1,6 м, а при наличии технических подполий, каналов или подвалов – 3,6-5,6 м. Такие размеры обусловлены унификацией размеров сборных железобетонных конструкций. С элементами каркаса колонны соединяют болтами и сваркой свальных закладных деталей (рис. 24.1, г).

На боковых поверхностях одноветвевых и двухветвевых колонн в местах их заделки в фундамент для восприятия сдвигающих усилий предусматривают устройство шпонок в виде треугольных канавок глубиной 25 мм с шагом 200 мм.

Марки колонн для определенного типа здания подбирают по каталогу сборных железобетонных изделий в зависимости от грузоподъемности кранов, режима их работы, шага колонн, пролета и высоты здания, нагрузки от покрытия и давления ветра.

К современным прогрессивным конструктивным решениям колонн можно отнести цилиндрические колонны из центрифугированного железобетона, которые применяют в настоящее время в экспериментальном порядке как для зданий без опорных кранов, так и с опорными кранами грузоподъемностью до 30 т и в промышленных сооружениях различного назначения. Такое решение позволяет уменьшить расход бетона на 30-50% и стали на 20-30% (рис. 24.2).

Рис. 24.2. Типы цилиндрических колонн

Фундаменты под колонны. Объем бетона, идущего в фундаменты под колонны в промышленном здании, составляет 20-35% общего объема расходуемого бетона, а стоимость их возведения составляет 5-20% полной стоимости здания. Это говорит о том, что правильный выбор конструкции фундамента имеет существенное значение и в значительной мере влияет на стоимость всего здания.

Фундаменты устраивают монолитными и сборными. Сборные железобетонные фундаменты могут быть из одного блока, из блока и плиты или из нескольких блоков и плит. Блоки и плиты укладывают на подготовку толщиной 100 мм – щебеночную при сухих грунтах и бетонную (марки 50) при влажных грунтах.

На один фундаментный блок можно опирать от одной до четырех колонн (в местах устройства температурных швов). Площадь подошвы и другие размеры фундамента устанавливают по расчету в зависимости от передаваемой на него нагрузки и несущей способности основания.

Фундаменты в виде отдельных блоков (рис. 24.3) имеют квадратное или прямоугольное очертание в плане. Их применяют под сборные железобетонные колонны сечением 400×400 и 500×500 мм. Одноблочные фундаменты массой до 12 т изготовляют на заводах сборных железобетонных конструкций, а массой до 22 т – на полигонах или их выполняют монолитными непосредственно на строительной площадке. Одноблочные фундаменты – башмаки устраивают ступенчатыми с размерами стаканов соответственно размерам поперечных сечений колонн.

Рис. 24.3. Сборные фундаменты под колонны: а – из одного блока; б – из блока и плиты: 1 – фундаментная плита; 2 – стакан, 3 – подъемные петли; 4 – риски; 5 – сварные швы; 6 – выравнивающий слой раствора; 7 – закладные детали и анкеры; 8 – газовые трубки

Когда на фундаменты передают большие нагрузки, что вызывает значительные их размеры, и масса блока превышает грузоподъемность кранов, а применение монолитной конструкции экономически нецелесообразно, возникает необходимость применения сборных фундаментов. Сборные фундаменты могут быть из двух элементов – блока и плиты (рис. 24.3, б) или нескольких блоков и плит (рис. 24.4, а). Последние применяют в том случае, если масса блоков в двухблочном фундаменте оказывается больше грузоподъемности наличных транспортных и монтажных средств. Сборные элементы фундаментов укладывают на растворе и скрепляют между собой сваркой закладных стальных деталей.

Рис. 24.4. Сборные железобетонные фундаменты и опирание на них колонн каркаса: а – из нескольких блоков и плит; б – то же, из блоков с пустотами; в – жесткая заделка колонны в стакан: 1 – колонна; 2– башмак со стаканом (подколонник); 3 – промежуточный блок; 4 – плиты; 5 – цокольная панель; 6 – столбик; 7 – фундаментная балка; 8 – монтажный бетон: 9 – цементный раствор; 10 – соединение закладных стальных деталей с помощью сварки

На сборные фундаменты расходуется большое количество бетона и стали. Для устранения этого недостатка элементы многоблочного фундамента можно выполнять с вертикальными пустотами, получая фундамент как бы в виде балочной клетки (рис. 24.4 б). Блоки и плиты, образующие фундамент, пред­ставляют собой пакеты железобетонных элементов, соединенных конструктивными диафрагмами.

Число, размеры и расположение пустот в плане выбирают так, чтобы при укладке элементов фундамента друг на друга образовались колодцы, проходящие через весь фундамент. Вертикальные пустоты могут быть различной формы: круглые, квадратные, прямоугольные, овальные. В случае передачи на фундамент эксцентричной нагрузки часть вертикальных колодцев в пределах контура подколонника может быть заармирована и замоноличена.

Отметка верхнего обреза фундамента независимо от грунтовых условий должна быть на 150 мм ниже отметки чистого пола (рис. 24.4, а). Такое решение дает возможность осуществлять монтаж конструкций наземной части здания после того, как произведена обратная засыпка котлованов, устроена подготовка под полы и проложены все коммуникации, что особенно важно в условиях просадочных макропористых грунтов, когда попадание воды в котлованы должно быть совершенно исключено.

Для заложения фундаментов на требуемую по геологическим условиям глубину применяют в зависимости от экономической целесообразности один из следующих способов: устраивают дополнительную подушку под подошвой фундамента, увеличивают верхнюю ступень фундамента, колонны устанавливают одной высоты (по наименьшей отметке заложения фундаментов), а в местах изменения отметок заложения фундаментов применяют вставки – подколонники.

Соединение колонн каркаса с фундаментами, как правило, выполняют в виде жесткого сопряжения. При таком соединении колонны устанавливают в специально устроенные в фундаментах стаканы (рис. 24.4, в). При этом зазоры в стаканах между колоннами и башмаками заполняют бетоном.

Фундаментные балки. Наружные и внутренние самонесущие стены здания устанавливают на фундаментные балки, посредством которых нагрузку передают на фундаменты колонн каркаса. Фундаментные балки укладывают на специально заготовленные бетонные столбики, устанавливаемые на обрезы фундаментов (рис. 24.5, а).

Рис. 24.5. Опирание фундаментных балок на фундаменты: а – под продольную стену; б – под торцевую стену: 1 – фундаментная балка; 2 – бетонный столбик; 3 – колонна; 4 – самонесущая продольная стена; 5 – торцевая стена; 6 – фахверковая колонна; 7 – фундамент под основную колонну; 8 – фундамент под колонну фахверка; 9 – шлаковая засыпка; 10 – жирная глина; 11 – песчаная подсыпка; 12 – отмостка; 13 – гидроизоляция

Основные фундаментные балки изготовляют высотой 450 мм (для шага колонн 6 м) и 600 мм (для шага колонн 12 м) и шириной 260, 300, 400 и 520 мм. Эти размеры соответствуют наиболее распространенной в промышленных зданиях толщине наружных стен. На рис. 24.5, б показано расположение фундаментных балок под торцевую стену. Сечение фундаментных балок может быть тавровым, трапециевидным и прямоугольным. Балки таврового сечения получили наибольшее распространение как более экономичные по расходу стали и бетона.

При замерзании под действием увеличивающихся в объеме пучинистых грунтов в фундаментных балках могут возникнуть деформации. Во избежание этого и для предохранения пола от промерзания вдоль стен балку с боков и снизу засыпают шлаком. Верхнюю грань фундаментной балки размещают на 30-50 мм ниже уровня пола помещения, который в свою очередь располагают примерно на 150 мм выше отметки спланированной вокруг здания поверхности земли.

Поверх фундаментных балок укладывают гидроизоляцию из цементно-песчаного раствора или из двух слоев рулонного материала на мастике. На поверхности земли вдоль фундаментных балок устраивают отмостку или тротуар. После установки сборных фундаментных балок на место зазоры между ними и колоннами заполняют бетоном.

Обвязочные балки служат для опирания наружных стен в местах перепада высот зданий, а при расположении этих балок над оконными проемами они выполняют роль перемычек. Изготовляют обвязочные балки разрезными. Их размеры и форму поперечного сечения принимают в зависимости от толщины устанавливаемых на них стен и величины передаваемой нагрузки.

Обвязочные балки применяют тогда, когда стены здания делают из кирпича или мелких блоков. Размеры обвязочных балок унифицированы; под кирпичные стены ширина 250 и 380 мм с «носиком», под стены из мелких блоков толщиной 190 мм обвязочные балки принимают шириной 200 мм. Обвязочные балки изготовляют высотой 600 мм и длиной 6 м (рис. 24.6) и крепят к колоннам каркаса с помощью монтажных деталей, привариваемых к закладным деталям в балках и колоннах. В типовых железобетонных колоннах для этих целей используют закладные детали, предусмотренные для крепления стеновых панелей.

Рис. 24.6. Крепление обвязочных балок к железобетонной колонне: 1 – стальная опорная консоль; 2 – закладные детали в колонне; 3 – закладная деталь в обвязочной балке; 4 – бетон на мелким гравии

Железобетонные подкрановые балки служат опорами для рельсов, по которым передвигаются мостовые краны. Кроме того, они обеспечивают продольную пространственную жесткость каркаса здания.

Железобетонные подкрановые балки имеют ограниченное применение и могут быть разрезными и неразрезными. Первые по сравнению со вторыми получили большее распространение, так как они проще в мон­таже. При устройстве неразрезных балок расход арматуры меньше, однако выше трудоемкость их изготовления.

В зависимости от положения балок вдоль кранового пути различают балки средние и крайние, располагаемые у поперечных температурных швов и у торцов зданий. Последние имеют те же размеры, что и средние, однако закладные детали в них, предназначенные для крепления к колоннам, располагают на расстоянии 500 мм от торца балок.

Железобетонные подкрановые балки могут быть таврово-трапециевидного или двутаврового сечения (рис. 24.7), их применяют под краны легкого и среднего режима работы при шаге колонн 6 и 12 м и грузоподъемности мостовых кранов до 30 т.

Рис. 24.7. Железобетонные подкрановые балки: а – тавровые под краны грузоподъемностью 10–30 т при шаге колонн 6 м; б – двутавровые поп, краны грузоподъ­емностью 10–30 т при шаге колонн 12 м; 1 – отверстия для крепления троллейных проводов, 2 – отверстия для крепления кранового пути

После установки и выверки подкра­новых балок производят их крепление (рис. 24.8) к колоннам: внизу – на болтах и сварке, вверху – приваркой вертикально поставленного листа к закладным деталям в колонне и балке. При изготовлении железо­бетонных подкрановых балок в их тело закладывают газовые трубки, необходимые для пропуска болтов крепления кранового пути и подвесок для троллейных проводов.

Рис. 24.8. Крепление подкрановых балок к колоннам каркаса: 1 – колонна; 2 – подкрановая балка; 3 – закладная сталь­ная деталь колонны; 4 – опорный стальной лист консоли колонны; 5 – стальная прокладка с отверстиями для бол­тов; 6 – нижняя закладная стальная деталь подкрановой балки; 7 – анкерные болты; 8 – верхняя закладная сталь­ная деталь подкрановой балки; 9 – крепежный вертикально поставленный стальной лист; 10 – сварка

Крановый путь монтируют в определенной последовательности. По верху подкрановой балки укладывают тонкую упругую подкладку из прорезиненной ткани толщиной 8–10 мм с двухсторонней резиновой обкладкой. Перед ее укладкой поверхности подкрановой балки, рельса и упругой подкладки тщательно очищаются от грязи и жира. По упругой подкладке устанавливают и отрихтовывают крановый рельс и затем закрепляют его лапками-прижимами.

Для кранов грузоподъемностью 10-30 т применяют рельсы Р-43, КР-70 и КР-89 специального профиля. При кранах грузоподъемностью 5-10 т применяют и железнодорожные рельсы широкой колеи Р-38. В пределах температурного блока рельсы сваривают в одну плеть.

В горцах здания на подкрановых балках устанавливают упоры для мостовых кранов.

Несущие конструкции покрытий промышленных зданий подразделяют на стропильные, подстропильные и не­сущие элементы ограждающей части покрытия.

В промышленных зданиях обычно применяют следующие типы стропильных несущих конструкций: плоскостные – балки, фермы, арки и рамы; пространственные – оболочки, складки, купола, своды и висячие системы.

Подстропильные конструкции выполняют в виде балок и ферм, а несущие конструкции ограждающей части покрытия – в виде крупноразмерных плит. Соответственно унифицирован­ным размерам объемно-планировочных элементов промышленных зданий величину поперечных пролетов и продольного шага несущих конструкций назначают кратной укрупненному мо­дулю 6 м, в отдельных случаях допускают применение модуля 3 м.

Железобетонные балки применяют для устройства покрытий в промышленных зданиях при пролетах 6, 9, 12 и 18 м. Необходимость балочных покрытий при пролетах 6, 9 и 12 м (таких размеров пролеты можно перекрыть и плитами) возникает в случае подвески к несущим конструкциям монорельсов или кранов.

Железобетонные балки могут быть односкатными, двухскатными и с параллельными поясами (рис. 24.9). Односкатные балки применяют в зданиях с шагом колонн 6 м и наружным отводом воды. Двухскатные балки устанавливают как в зданиях с наружным, так и с внутренним отводом воды. Балки пролетами 6, 9 и 12 м устанав­ливают только с шагом 6 м, а балки пролетом 18 м – с шагом 6 и 12 м. При наличии подвесного транспорта независимо от пролета балки ставят с шагом 6 м.

Рис. 24.9. Железобетонные балки: а – односкатные; б – двускатные; в – с параллельными поясами

В целях уменьшения массы балок и для пропуска коммуникаций в их стенах можно устраивать отверстия различного очертания. Односкатные балки опирают на типовые железобетонные колонны разной высоты, которая кратна модулю 600 мм. В связи с этим уклон односкатных балок пролетом 6 м будет 1:10, пролетом 9 м – 1:15, а пролетом 12 м – 1:20. Уклон верхнего пояса двускатных балок делают 1:12.

Балки покрытия соединяют с колоннами анкерными болтами, выпущенными из колонн и проходящими через опорный лист, приваренный к балке (рис. 24.10, а, б). В продольных температурных швах одну из балок устанавливают на катковую опору; балку, располагаемую рядом, устанавливают на стальной столик, устроенный над колонной (рис. 24. 10, в).

Рис. 24.10. Установка железобетонных балок: а – на крайние колонны; б – на средние колонны, в – в температурном шве на одну колонну: 1 – анкерный болт; 2 – опорный стальной лист балки; 3 – опорный стальной лист колонны; 4 – колонна; 5 – железобетонная балка; 6 – полутонка; 7 – каток; 8 –температурный шов

Железобетонные фермы применяют обычно для перекрытия пролетов 18, 24 и 30 м, их устанавливают с шагом 6 или 12 м. Фермы пролетом 18 м легче железобетонных балок того же пролета, но более трудоемки в изготовлении.

Применение 18-метровых ферм целесообразно в том случае, когда в пределах покрытия необходимо разместить коммуникационные трубопроводы и вентиляционные каналы или использовать межферменное пространство для устройства технических этажей. При пролетах 24 и 30 м применение ферм по сравнению с балочными конструкциями более выгодно, так как масса (вес) большепролетных ферм на 30-40% меньше массы (веса) балок.

В современной практике промышленного строительства наибольшее распространение получили фермы сегментного очертания и с параллельными поясами (рис. 24.11), причем обе включены в номенклатуру типовых сборных железобетонных конструкций заводского изготовления. Железобетонные фермы могут быть цельными и составными» последние собирают из двух полуферм (отправочных марок), или из блоков, либо из литейных элементов.

Рис. 24.11. Унифицированные сборные железобетонные фермы: а – сегментные; б – с параллельными поясами (элементы ферм, показанные пунктиром, устанавливаются при наличии подвесного потолка)

Включенные в номенклатуру сборных железобетонных конструкций сегментные фермы пролетами 18, 24, 30 м собирают из заранее изготовленных линейных элементов верхнего и нижнего пояса и решетки. Линейные элементы имеют длину, равную панели фермы, а для нижнего пояса иногда принимают длину, равную пролету фермы.

Соединение линейных элементов между собой осуществляют сваркой концов арматуры с постановкой сальных накладок и последующим бетонированием быстротвердеющим бетоном. Арматура в нижнем поясе подвергается предварительному натя­жению, после чего каналы в узлах заполняют цементным раствором, а лотки нижнего пояса – бетоном. Железобетонные фермы позволяют оборудовать пролеты зданий подвесным транспортом грузоподъемностью до 5 т (при шаге ферм 6 м). По верхнему поясу сегментных ферм возможна установка конструкций световых и аэрационных фонарей.

Для зданий, где необходимо использовать межферменное пространство для вспомогательных помещений или коммуникаций, применяют безраскосные фермы со стойками через 3 м (рис. 24.12). При плоском покрытии стойки ферм пропускают за пределы верхнего пояса; они служат опорами для плит покрытия (рис. 24. 12, б). На опоры ферм устанавливают отдельные стойки, которые кре­пят приваркой стальных накладок к закладным деталям, расположенным в фермах и стойках.

Рис. 24.12. Сборные железобетонные фермы: а – безраскосная для зданий со скатным покрытием; б – безраскосная для зданий с плоским покрытием; в – общий вид покрытия с подстропильными конструкциями; г – арочная из двух полуферм: 1 – дополнительная стойка; 2 – плита покрытия; 3 – стропильная ферма; 4 – подстропильная ферма

Безраскосные фермы позволяют уменьшить число типов стропильных ферм, кроме того, они, по сравнению с фермами, имеющими раскосную решетку, менее трудоемки в изготовлении.

На рис. 24.12, в приведен пример решения покрытия с применением 24-метровых сегментных безраскосных ферм, опирающихся на 18-метровые железобетонные сегментные безраскосные подстропильные фермы. В отдельных случаях для перекрытия больших пролетов применяют составные фермы. На рис. 24.12, г показана железобетонная ферма пролетом 45 м, разработанная для устройства покрытия над главным корпусом ГРЭС. Ферма запроектирована составной из двух полуферм, трех элементов затяжек, нижнего пояса и двух подвесок.

Фермы к колоннам каркаса крепят выпущенными из колонны анкерными болтами, причем для увеличения жесткости соединений опорные листы ферм приваривают к закладным деталям колонн.

Железобетонные арки целесообразно применять при больших пролетах (40 м и более). Арки подразделяют на трехшарнирные с шарнирами на опорах и в середине пролета, двухшарнирные с шарнирами на опорах и бесшарнирные. Очертание разбивочной оси арок должно максимально совпадать с линией давления, с тем, чтобы арки главным образом работали на сжатие. Опорами арок могут быть колонны здания или специальные фундаменты. При больших пролетах арки, как правило, опирают непосредственно на фундаменты.

В трехшарнирных арках средний ключевой шарнир осложняет конструктивное решение самой арки и устройство ограждающих конструкций покрытия с кровлей. По этим причинам железобетонные трехшарнирные арки практического применения в настоящее время не имеют.

Самые распространенные – двухшарнирные арки, наиболее простые в изготовлении и монтаже. При температурных воздействиях они имеют возможность изгибаться, свободно поворачиваясь в шарнирах без существенного увеличения напряжений в сечениях арки. В двухшарнирных арках распор воспринимает затяжка и передает его на опоры.

Бесшарнирные арки имеют наиболее легкое конструктивное решение, но для их опирания необходимо устройство мощных фундаментов, к тому же они чувствительны к нерав­номерным осадкам грунтов основания. Бесшарнирные арки при их опирании непосредственно на фундаменты выполняют, как правило, без затяжек.

В практике строительства применяют преимущественно арки из сборных элементов. Монолитные арки не получили распространения из-за большой трудоемкости их возведения. Сборные элементы, в свою очередь, собирают из блоков. Сечение арки может быть прямоугольным, тавровым, коробчатым и другой формы.

Пример двухшарнирной арки, опирающейся на свайные фундаменты, представлен на рис. 24.13, а. Пример бесшарнирной арки пролетом около 60 м, высотой (в средней части) 40 м, опирающейся непосредственно на фундаменты, показан на рис. 24.13 б. В этом примере арка запроектирована открытой, к ней при помощи стальных стержней подвешено легкое пространственного типа покрытие.

Рис. 24.13. Железобетонные арки: а – двухшарнирная; б – бесшарнирная, опертая на фундаменты; в – бесшарнирная, опертая на колонны: 1 – звено арки; 2 – опорная бортовая балка; 3 – подвеска; 4 – затяжка; 5 – плита покрытия; 6 – колония каркаса, 7 – подвешенное покрытие пространственною типа

Железобетонная арка из предварительно напряженных элементов пролетом 96 м, опирающаяся на колонны с шагом 12 м, приведена на рис. 24.13, в. Длина отдельных сборных звеньев с двутавровым поперечным сечением не превышает 17 м при мас­се до 25 т. Звенья соединяют между собой сваркой закладных стальных деталей. Подвески, поддерживающие железобетонную затяжку лоткового сечения, выполнены из металлических уголков. Арка воспринимает нагрузку от подвесного транспорта – четырех подвесных кранов грузоподъемностью по 5 т.

Железобетонные рамы устраивают однопролетными и многопролетными, монолитными и сборными (рис. 24.14). Рамы представляют собой стержневую конструкцию, геометрическую неизменяемость которой обеспечивают жесткие соединения элементов рамы в узлах. Очертание ригелей в раме может быть прямолинейным, ломаным или криволинейным. Жесткое соединение элементов рамы в узлах позволяет увеличить размер перекрываемого пролета.

Рис. 24.14. Железобетонные рамы: а, в – однопролетные монолитные; б – многопролетная сборная

Конструктивное решение однопролетной двухшарнирной рамы из пред­варительно напряженного железобетона со стойками переменного сечения и ригелем коробчатого сечения показано на рис. 24.14, а, однопролетной железобетонной рамы со стойками, жестко заделанными в фундаменты, и с консолями для опирания под­крановых балок под мостовой кран – на рис. 24.14, в. В этих примерах стойки рам выступают из плоскости стен в наружную сторону, что придает зданиям своеобразное архитектурное решение.

Сборная многопролетная рама, монтируемая из крайних Г-образных стоек, средних Т-образных стоек и скатных вкладышей – ригелей, представлена на рис. 24.14, б. Стыки в раме расположены в местах, где изгибающие. моменты возникают только при ветровых и несимметричных нагрузках от снега.

Конструкция фундаментов промышленных зданий

По способу возведения фундаменты промышленных зданий делят на монолитные и сборные.

Под колонны каркасного здания устраивают, как правило, столбчатые фундаменты с подколонниками стаканного типа, а стены опирают на фундаментные балки. Ленточные и сплошные фундаменты предусматривают редко, как правило, на слабых, просадочных грунтах и при больших ударных нагрузках на грунт технологического оборудования.

Унифицированные монолитные железобетонные фундаменты имеют ступенчатую форму с подколонником стаканного типа для заделки колонн.
Сборные фундаменты экономичнее монолитных, но на них больше расходуется стали. Более легкими и экономичными по расходу стали, являются сборные фундаменты ребристой или пустотной конструкции.

При близком расположении уровня грунтовых вод (УГВ) и при слабых грунтах устраивают свайные фундаменты. Наиболее распространены железобетонные сваи круглого и квадратного сечений. По верху сваи связывают монолитным или сборным железобетонным ростверком, который служит одновременно подколонником.
Подколонник устанавливают на плиту по слою цементно-песчаного раствора. При действии на фундамент изгибающего момента соединение подколонника с плитой усиливают сваркой закладных элементов, а места сварки заделывают бетоном.
Ступени плиты всех фундаментов имеют единую унифицированную высоту 300 мм или 450 мм.
В верхней части подколонника устроен стакан для установки в него колонны. Дно стакана располагают на 50 мм ниже проектной отметки низа колонны для того, чтобы компенсировать подливкой раствора неточности в размерах и заложении фундаментов.
Колонны с фундаментом соединяют различными способами. В основном с помощью бетона. Для обеспечения жесткого закрепления колонны в стакане фундамента на боковых поверхностях железобетонной колонны устраивают горизонтальные бороздки. Зазор между гранями колонны и стенками стакана поверху составляет 75 мм, а по низу стакана 50 мм (рис.2).
Обрез фундамента под железобетонные колонны располагают на отметке -0.15 м, под стальные колонны – на отметках -0.7 м или -1.0 м.
Фундаменты под смежные колонны в температурных швах делаются общими, независимо от числа колонн в узле. Для каждой сборной железобетонной колонны в этом случае устраивают отдельный стакан.

Монолитные фундаменты железобетонных
колонн в местах устройства деформационных швов
В фундаментах под стальные колонны подколонник делают сплошным (без стакана) с анкерными болтами.

а) колонны постоянного сечения;
б) колонны двухветвевые (сквозного сечения)
Стены каркасных зданий опирают на фундаментные балки, укладываемые между подколонниками фундаментов на бетонные столбики необходимой высоты, бетонируемые на уступах фундаментов. Фундаментные балки имеют тавровое или трапецеидальное поперечное сечение. Номинальная длина их составляет 6 и 12 м. Конструктивная длина фундаментных балок выбирается в зависимости от ширины подколонника и местоположения балок. Верхняя грань балок располагается на 30 мм ниже уровня чистого пола.

Сечения фундаментных балок
Фундаментные балки устанавливают на подливку из цементно-песчаного раствора толщиной 20 мм. Этим раствором заполняют зазоры между торцами балок и стенками подколонников. По балкам для гидроизоляции стен укладывают 1-2 слоя рулонного водонепроницаемого материала на мастике. Во избежание деформации балок вследствие пучения грунтов снизу и с боков балок предусматривают подсыпку из шлака, песка или кирпичного щебня.

Устройство фундаментных балок промышленных зданий

Фундаменты промышленных зданий

Новый сервис — Строительные калькуляторы online

Фундаменты сборных железобетонных колонн

Типовые чертежи фундаментов по сериям 1.412-1, 1.412-2 разработаны для сборных железобетонных колонн любого вида и типоразмера при нормативном давле­нии на грунт 0,15-0,45 МПа.

Фундаменты вы­полняют на строительной площадке, исполь­зуя, как правило, деревянную опалубку.

Фундаменты состоят из подколонника и одно-, двух- или трехступенчатой плитной части.

Фундаменты спроектированы по высоте 1,5 м и в пределах 1,8-4,2 м с интервалом 0,6 м.

Обрез фундаментов под железобетонные колонны располагается чаще всего для одно­этажных зданий на отметке минус 0,15 м, для многоэтажных зданий-на отметке минус 0,2 м.

Фундаменты выполнены с уступами, высота которых 0,3 и 0,45 м.

Все размеры их в плане унифицированы и кратны модулю 0,3 м.

Площадь подколонников принята в шести вариантах начиная от 0,9 х 0,9 м (ак х Ьк).

В последующих вариантах размер подколонника в направлении шага колонн Ьк установлен 1,2 м, а размер в направлении пролета между колоннами ак составляет 1,2; 1,5; 1,8; 2,1 и 2,7 м.

Фундаменты сборных железобетонных колонн:

(1-подколонник стаканного типа; 2-железобетонная колонна; 3-плитная часть; 4-подошва фундамента)

Размеры конкретного фундамента выбира­ют в зависимости от нагрузки, передаваемой колонной, характеристик грунта и решений конструктивной части здания ниже отметки 0.000.

Зазор между гранями колонн и стенкой стакана принят по верху стакана 75 мм и по низу 50 мм, а между низом колонны и дном стакана 50 мм. Минимальная толщина стенки поверху 175 мм.

Стакан для ветвей двухветвевой колонны устраивают об­щим.

Класс бетона фундаментов В10-В12 (М150 или М200).

После установки колонн стаканы заливают бетоном класса В20 или В25 на мелком гравии.

Под железобетонные фундаменты обычно делают подготовку толщиной 100 мм из щебня с проливкой цементным раствором или из бетона класса В7,5.

При прочных слабофильтрующих грунтах устройство подготовки не требуется.

Фундамент под спаренные колонны в температурных швах устраивают общим даже в том случае, если колонны по смежным разбивочным осям спроектированы стальными и железобетонными.

Фундаментные балки под наружные стены рассчитаны на нагрузку от сплошных стен и стен с оконными или дверными проемами, расположенными над серединой фундаментной балки.

Для опирания фундаментных балок на фундаменты колонн рекомендуется устройство приливов (бетонных столбиков), ширину которых следует принимать не менее максимальной ширины балки, а обрез на от­метке минус 0,45 или 0,6 м-в зависимости от ее высоты.

В многоэтажных каркасных зданиях с под­валами стены последних могут быть выполне­ны монолитными, из сборных железобетонных панелей (аналогично панелям наружных стен зданий) или из стеновых блоков и плит.

Отметку низа фундаментов колонн и стен подвала, расположенных между колон­нами, принимают, как правило, одинаковой.

Гидроизоляцию выполняют в соответствии с материалами, в зависимости от грунтовых вод и глубины наложения подвала.

В сухих грунтах следует учитывать возможность временного появления грунтовых вод, например весной.

Расположение фундаментных балок:

а — вид сбоку; б — план; в — сечение; 1 — фундаментная балка; 2 — прилив или бетонный столбик; 3 — колонна рядовая; 4 — колонна у температурного шва; 5 — колонна примыкающего пролета; 6 — стена; 7 — засыпка шлаком; 8 — отмостка

В многоэтажных каркасных зданиях с под­валами стены последних могут быть выполне­ны монолитными, из сборных железобетонных панелей (аналогично панелям наружных стен зданий) или из стеновых блоков и плит.

Отметку низа фундаментов колонн и стен подвала, расположенных между колон­нами, принимают, как правило, одинаковой.

Гидроизоляцию выполняют в соответствии с материалами, в зависимости от грунтовых вод и глубины наложения подвала.

В сухих грунтах следует учитывать возможность временного появления грунтовых вод, например весной.

Фундаменты стальных колонн

Фундаменты под стальные колонны принима­ют по типу фундаментов под железобетонные колонны. При этом подколонник устраивается сплошным (без стакана) и имеет анкерные болты, заделанные в бетон.

База стальной колонны крепится к фундаменту гайками, навинчивающимися на верхние выступающие из бетона концы анкерных болтов.

Размеры фундамента выбирают как для сборной железобетонной колонны, имеющей размеры сечения, близкие к размерам сечения стальной колонны.

Для заглубления развитых баз стальных колонн (с траверсами) обрезы фундаментов располагают на отметке — 0,7 или — 1,0 м.

Для стальных колонн, у которых траверсы отсутствуют, отметку верха подколонника назначают порядка — 0,25 м.

Сечение подколонников под базы сталь­ных колонн выбирают так, чтобы расстояние от оси анкерных болтов до грани подколонника было не менее 150 мм.

Монолитные железобетонные фундаменты под стальные колонны:

(1-стальная колонна; 2-анкерный болт; 3-анкерная плита; 4-опорная плита; 5-цементная подливка; 6-железобетонный фундамент)

Свайные фундаменты

Конструкции монолитных фундаментов железобетонных и стальных колонн могут при­меняться совместно со сваями.

При устройстве фундаментов использование свай целесообразно в тех случаях, когда не­посредственно под сооружением залегают сла­бые грунты, не способные выдержать нагрузку от сооружения, или когда применение свай позволяет получить экономически наиболее выгодное решение.

В отечественной практике известно более 150 видов свай, которые классифицируются по материалам (железобетонные, бетонные, дере­вянные и т. д.), конструкции (цельные, состав­ные, квадратные, круглые, с уширением и без него и т.д.), виду армирования, способу из­готовления и погружения (сборные, монолит­ные, забивные, завинчиваемые, буронабивные, виброштампованные и т. д.), характеру работы в грунте (сваи-стойки, висячие сваи).

Сваи железобетонные забивные цельные сплошного квадратного сечения по ГОСТ 19804.1-79* и ГОСТ 19804.2-79* рекоменду­ется применять для всех зданий и сооружений в любых сжимаемых грунтах (за исключением грунтов с непробиваемыми включениями).

Сваи забивают до проектных от­меток.

В том случае, если по каким-либо при­чинам отметки свай разные, осуществляют срубку свай ручными или механическими ин­струментами до заданных проектных отметок.

Свайные фундаменты:

1-железобетонная колонна; 2-подколонник; 3-плитная часть фундамента; 4-свая

Строй-справка.ру

Железобетонные каркасы зданий и сооружений

Железобетонные каркасы зданий и сооружений

Каркасы одноэтажных зданий. Элементы каркаса. Основные элементы железобетонного сборного каркаса одноэтажных промышленных зданий: фундаменты, фундаментные балки (рандбалки), колонны, подкрановые балки, несущие элементы покрытия (фермы, балки) и связи.

Все элементы сборных железобетонных каркасов унифицированы. Характеристика каждого из них дана в специальных каталогах. Для соединения сборных железобетонных элементов каркаса между собой, а также для крепления стен, покрытий и других элементов зданий они имеют закладные стальные детали.

Рис. 49. Общий вид сборного железобетонного каркаса: 1— колонна; 2 — подкрановая балка; 3 — ферма; 4— плиты покрытия; 5 – стальные рама фонаря; связи

Для строповки элементов каркаса при их транспортировании, складировании и монтаже в процессе изготовления в них закладывают монтажные (подъемные) петли из мягкой арматурной стали (класса А-1) или устраивают специальные отверстия. Сборку железобетонных элементов в каркас производят путем сварки стальных закладных деталей. На рис. 49 приведен общий вид сборного железобетонного каркаса одноэтажного промышленного здания.

Фундаменты. Под колонны каркаса зданий устраивают отдельно стоящие железобетонные фундаменты ступенчатой формы, имеющие в верхней части стакан, в который устанавливают колонны (рис. 50). Устройство этих фундаментов см. в § 24. фундаментные балки. В промышленных каркасных зданиях с шагом колонны 6 и 12 м фундаментные балки служат для опирания на них самонесущих стен и передачи от них нагрузок на фундаменты. Балки имеют тавровое (рис. 51) или трапецеидальное поперечное сечение. Длина основных балок при шаге колонны 6 м—4950 мм, при шаге 12 м— 10700 мм.

Рис. 50. Опирание колонны на фундамент: 1 — колонна; 2 — фундамент
Рис. 51. Фундаментная балка

Балки, укладываемые у торцов здания и температурных швов, где шаг колонн уменьшен, на 500 мм короче основных —4450 и 10 200 мм. Толщина балок для кирпичных стен—250, 380 и 510 мм, блочных —380 и 510 мм, панельных —200, 240, 300 и 400 мм. Высота фундаментных балок 400 и 600 мм.

Балки длиной 6 м изготовляют без предварительного напряжения, длиной 12 м—предварительно напряженными.

Рис. 52. Опирание фундаментной балки: 1 — фундаментная балка; 2 — бетонный столбик; 3 — фундамент

Под наружные стены балки укладывают с внешней стороны колонны, под внутренние стены — между колоннами на продольной раз-бивочной оси. Балки опирают непосредственно на ступени фундаментов или на бетонные столбики (рис. 52), выложенные по этим ступеням с таким расчетом, чтобы верхняя грань балок была расположена на отметке —0,030, т. е.на 30 мм ниже уровня чистого пола. Зазоры между торцами балок, а также между концами балок и колоннами заполняют бетоном марки 100.

По выровненной поверхности балок устраивают горизонтальную гидроизоляцию стен. Во избежание деформации балок при пучинистых (глинистых) грунтах, а также для защиты пристенной полосы пола от промерзания снизу и с боков фундаментных балок делают шлаковую подсыпку.

Фундаментные балки изготовляют из бетона марок 200—400, рабочую арматуру балок ФБ— из стали класса А-П, балок ФБН (фундаментные балки напряженные) — из стали класса А-Шв.

Колонны. В одноэтажных промышленных зданиях сборные Железобетонные колонны применяют сплошные прямоугольного сечения (рис. 53, а, б) и сквозные двухветвевые (рис. 53, в). В зданиях, оборудованных мостовыми кранами, колонны имеют консоли для опирания на них подкрановых балок, на которые укладывают рельсы для передвижения крана. Унифицированные колонны имеют высоту, кратную модулю 600 мм. Проектная высота колонны (Н) исчисляется от уровня чистого пола помещения, т. е. от отметки 0, 000 до верха колонны без учета ее нижнего конца длиной 900—1350 мм, заделываемого в фундамент.

Рис. 53. Типы сборных железобетонных колонн одноэтажных промышленных зданий: а — для бескрановых зданий; б—крановые прямоугольного сечения; в — крановая двухветвевая для средних рядов

Часть колонны, расположенную выше консолей, называют над-крановой, ниже — подкрановой. Надкрановую часть колонны, поддерживающую элементы покрытия, называют надколонником. В двух-ветвевых колоннах надколонник выполняют из одной ветви, вследствие чего для опчрания подкрановых балок создаются уступы. Верхний торец колонны имеет стальной закладной лист с анкерными болтами для крепления несущих элементов покрытия. Стальные закладные детали предусматривают также в местах установки подкрановых балок и связей и, кроме того, в боковых плоскостях крайних колонн (для крепления стен).

Для выверки положения колонн при их монтаже предусмотрены риски в виде вертикальных канавок треугольного профиля. Их наносят на четырех гранях колонн (вверху и внизу), а также на боковых гранях консолей колонн.

Колонны изготовляют из бетона марок 200, 300 и 400, рабочую арматуру — из стали класса А-Ш.

Колонны фахверка (вспомогательного каркаса) устраивают торцовых фахверках и фахверках продольных стен одноэтажных промышленных зданий при длине стеновых панелей 6 и 12 м.

Колонны рассчитывают на нагрузку от ветра и массыпанельныхстен. устанавливают колонны на самостоятельные фундаменты. Наружная грань колонн рассполагается в плоскости внутренней поверхности стен.

Колонны изготовляют из бетона марок 200—-400, рабочая арматура — из стали класса А-Ш.

Рис. 54. Сборные железобетонные подкрановые балки: а —таврового сечения длиной 6 м б — двутаврового сечения длиной 12 м

Подкрановые балки служат для передвижения по ним мостовых кранов и являются продольными связями между колоннами каркаса. Балки устанавливают на железобетонные колонны при их шаге 6 и 12 м. Подкрановые балки имеют тавровое или двутавровое сечение. Балки пролетом 6 м изготовляют таврового поперечного сечения с утолщением стенки на опорах высотой 800 и 1000 мм (рис. 54, а), а пролетом 12 м. — двутаврового сечения высотой 1400 мм с усиленной верхней полкой (рисс 54, б). Верхние полки балок служат в основном для крепления к ним крановых рельс. В балках предусмотрены закладные детали, необходимые для крепления балок к колоннам и рельсовых путей к балкам. Все балки — предварительно напряженные.

Балки изготовляются из бетона марки 300—500, рабочая арматура—из высокопрочной проволоки Вр-П, стали класса А-Шв и др.

Стропильные балки. Их изготовляют односкатными, двускатными и с параллельными поясами (рис. 55).

Односкатные балки (рис. 55, а) применяют в покрытиях одноэтажных промышленных зданий пролетом 6—12 м, с шагом колонн 6 м и наружным водостоком. Двускатные балки (рис. 55, б) используют в покрытиях одноэтажных промышленных зданий при пролетах 6—18 м, шаге колонн 6 и 12 м с наружным и внутренним водостоком. Балки с параллельными поясами (рис. 55, в) применяют в покрытиях промышленных зданий с плоской кровлей при пролетах 12 и 18ми шаге колонн 6 и 12 м. Стропильные балки имеют тавровое или двутавровое сечение. В целях уменьшения массы балок и пропуска коммуникаций в их стенках устраивают отверстия различного очертания. Одно- и двускатные балки можно собирать из отдельных блоков с последующим натяжением пропущенной через них арматуры.

Балки устанавливают на железобетонные колонны или на несущие стены с устройством железобетонных подушек, а балки пролетом 18 м также на подстропильные балки. К колоннам балки покрытия прикрепляют анкерными болтами, выпущенными из колонн и проходящими через опорный лист, приваренный к закладной детали балки. Опорный лист балки прикрепляют к листу, заложенному в колонну.

В продольных температурных швах одну из балок устанавливают ца катковую опору.

Балки изготовляют из бетона марок 300, 400 и 500, рабочую арма-туру — из высокопрочной проволоки класса Вр-П или стержней из стали класса A-IV и А-Шв.

Рис. 55. Железобетонные балки: а — односкатные; б — двускатные; в — с параллельными поясами

Стропильные фермы — конструкции, состоящие из отдельных соединенных между собой стержней, образующих каркас.

Стержни фермы, расположенные по ее верхнему контуру, составляют верхний пояс, а по нижнему контуру — нижний пояс. Вертикальные стержни фермы называют стойками, наклонные — расколами. Стойки и раскосы, расположенные между верхними и нижними поясами, образуют решетку фермы, а точки (места), в которых сходятся концы стоек и раскосов,— узлы фермы. Участок между двумя соседними узлами называется панелью.

В зависимости от очертания верхнего пояса фермы делят на сегментные, с параллельными поясами и др. (рис. 56). Железобетонные фермы могут быть цельными или составными. Составные фермы выполняют из двух полуферм или нескольких блоков.

Рис. 56. Железобетонные предварительно напряженные Стропильные фермы: а — сегментная ферма; б — ферма с параллельными поясами

Их применяют в скатных и плоских покрытиях одноэтажных промышленных зданий пролетом 18 м и более. Устанавливают стропильные фермы на железобетонные колонны или подстропильные фермы. Для крепления ферм к колоннам (подстропильным фермам), а также к фермам плит покрытия, рам фонаря, связей в них предусмотрены соответствующие стальные закладные детали.

Фермы выполняют с предварительным напряжением нижнего пояса и растянутых раскосов (в фермах с параллельными поясами).

Изготовляют фермы из бетона марок 300—500, рабочую арматуру. — из высокопрочной проволоки Вр-Н и стержней из стали класса A-IV
и др.

Подстропильные фермы и балки применяют в покрытиях одноэтажных многопролетных промышленных зданий наряду со стропильными фермами и балками (рис. 57),

Подстропильные фермы и балки применяют в средних рядах зданий для опирания ферм или балок покрытия в тех случаях, когда их шаг составляет 6 м, а шаг колонн средних рядов — 12 м.

Подстропильные фермы (балки) устанавливают вдоль здания непосредственно на колонны, с которыми их скрепляют путем сварки закладных деталей. Все фермы (балки) имеют одинаковый пролет 12 м, кроме ферм, устанавливаемых в торцах здания и у поперечных температурных швов, пролет которых составляет 11, 5 м (в соответствии с расположением колонн). По концам и посредине (в нижнем узле) подстропильных ферм (балок) предусмотрены площадки для опирания стропильных ферм (балок). В площадках имеются закладные листы с приваренными к ним анкерными болтами.

Фермы (балки) изготовляют с предварительным напряжением нижнего пояса из бетона марок 400 и 500. Основная (напрягаемая) арматура — из высокопрочной проволоки класса Вр-11 и стали класса А-1У и др.

Связи. Жесткость сборного железобетонного каркаса в поперечном направлении (поперек пролетов) обеспечивается жесткостью самих колонн и их закреплением в фундаментах. В продольном на-правлении (вдоль пролетов) в зданиях с мостовыми кранами и без них при высоте более 9,6 м жесткость каркаса обеспечивается уста, новкой продольных вертикальных стальных связей(рис. 58), которые располагаются в каждом продольном ряду колонн у середины каждого температурного блока. Их выполняют из прокатных профилей и приваривают к специальным закладным деталям колонн.

Рис. 57. Подстропильные железобетонные предварительно напряженные конструкции: а — балка; б — ферма; в—деталь опиравши ферм покрытия на подстропильную ферму; 1 — подстропильная ферма; 2 — стропильные фермы; 3 — плиты покрытия; 4— закладные детали для крепления ферм; 5 — то же, для крепления плит

Рис. 58. Вертикальные связи между колоннами: а — крестовые; б — портальные; 1 —железобетонные колонны; 2 — подкрановые балки; 3 — балки (или фермы) покрытия; 4 — вертикальные связи

Кроме вертикальных связей между колоннами устанавливают также горизонтальные и вертикальные связи между фермами (балками) покрытия. Гори-, онтальные связи устанавливаются в горизонтальных плоскостях, е. в плоскостях верхнего и нижнего поясов ферм, вертикальные — в вертикальных плоскостях между фермами.

Каркасы многоэтажных зданий бывают рамного, связевого и рамно-связевого типа. Для зданий из сборных железобетонных элементов чаще применяют каркасы рамно-связевой системы (рис. 59).

Рис. 59. Многоэтажное здание с балочными перекрытиями рамно-связевой системы: 1 — самонесущая стена; 2 — ригель с полками; 3 — ребристые плиты; 4 — консоль колонны

Рис. 60. Колонны многоэтажных промышленных зданий

Основными элементами такого каркаса являются колонны, ригели, плиты перекрытий, связи.

Колонны (рис. 60) каркаса многоэтажных промышленных зданий обычно имеют сплошное прямоугольное сечение размером 400×400 или 400×600 мм, высоту на один или два этажа и выполняются консольного типа. В плане здания колонны имеют сетку 6×6 или 9×6 м.

Колонны нижнего этажа опирают на фундаменты стаканного типа. Колонны верхних этажей соединяют между собой путем сварки закладных стальных деталей. Торцы колонны снабжены стальными оголовками (сваренными из уголков и полос), к вертикальным стенкам которых приварены концы рабочей арматуры колонн. Стык осуществляется приваркой к тем же оголовкам коротких стыковых стержней.

В каркасах многоэтажных зданий стык колонн для удобства монтажа обычно предусматривают на высоте 0,6 м от уровня пола.

Колонны изготовляют из бетона марок 200—500, рабочую арма-ТУРУ — из стали класса А-Ш.

Ригели (рис. 61) используют в составе сборных железобетонных междуэтажных перекрытий в многоэтажных зданиях. Ригели изготовляют с полками для опирания плит и прямоугольного сечения без ц0ч лок длиной 6 и 9 м, высотой 800 мм и шириной 300 мм.

Ригели пролетом 6 м изготовляют без предварительного напряже. ния, а пролетом 9 м — с предварительным напряжением двух-трех стержней нижней рабочей арматуры. Для подвешивания комму. никаций в ригелях предусмотрены сквозные отверстия диаметром 50 мм. При монтаже каркаса эти отверстия используют для подъема ригелей.

Рис. 61. Ржели
Рис. 62. Плиты перекрытий

По концам ригелей в верхней части имеются выемки, в которых размещаются выпуски верхней опорной арматуры ригеля, стыкуемые с выпусками арматуры колонн.

Ригели устанавливают на консоли железобетонных колонн и соединяют с колоннами сваркой арматуры и закладных деталей с последующим замоноличиванием. Изготовляют их из бетона марок 200— 400, арматуру — из стали класса А-Ш (без предварительного напряжения) и А-Шв — для предварительно напряженной.

Плиты перекрытий (рис. 62) используют в составе сборных железобетонных перекрытий зданий. В многоэтажных зданиях применяют два типа плит перекрытий. Плиты 1-го типа изготовляют шириной 1500 и 750 и длиной 5550 и 5050, плиты 2-го типа — шириной 1500 и длиной 5950 мм. У продольных стен здания укладываются плит” номинальной ширины 750 мм.

Все плиты выполняют П-образного сечения высотой 400 мм. П торцам плит размещены глухие поперечные ребра такой же высот (плиты 1-го типа) и высотой 150 мм (плиты 2-готипа). Кроме того, в прилете имеются три промежуточных поперечных ребра высотой 200 мм. Толщина полки плит 50 мм. В продольных ребрах расположены отвер’ стия диаметром 35 мм Межколонные плиты (2-го типа), укладываемые по продольным разбивочным осям, так называемые распорные или связевые плиты, имеют вырезы в полках в местах примыкания к колоннам. Плиты изготовляют без предварительного напряжения или с предварительным напряжением рабочей арматуры. Продольные и поперечные ребра плит армируют плоскими сварными каркасами, полку — сварной сеткой. Основная арматура — стержневая.

Плиты 1-го типа укладывают на полки железобетонных ригелей(1-го типа), плиты 2-го типа — поверх железобетонных ригелей прямоугольного сечения (2-го типа).

Изготовляют плиты из бетона марок 200—300 (плиты 1-го типа) 300—400 (плиты 2-го типа), а основную рабочую арматуру — из сТали класса А-И, А-Ш и А-Ш в.

Связи. В сборных железобетонных каркасах рамно-связевой системы многоэтажных зданий колонны и ригели перекрытий образуют рЯд поперечных рам, обеспечивающих пространственную жесткость каркаса в поперечном направлении. Жесткость узлов сопряжения ригелей с колоннами достигается сваркой закладных деталей реги-лей и консолей колонн, а также сваркой выпусков верхней арматуры ригелей со стержнями, пропущенными сквозь тело колонны. Зазоры между колоннами и торцами ригелей заполняют бетоном.

Для обеспечения пространственной жесткости каркаса здания в продольном направлении на всех этажах в середине каждого температурного блока между колоннами продольных рядов ставят вертикальные стальные связи крестового или портального типа, привариваемые к закладным деталям колонн (см. рис. 58).

В многоэтажных зданиях пространственная жесткость здания в целом обеспечивается также проектированием в них так называемых стенок (диафрагм) и ядер жесткости. Стенки жесткости выполняют из сборного или монолитного железобетона”. В качестве сборного железобетона применяют отдельные стеновые панели, которые устанавливают между колоннами каркаса здания. Крепление панелей к колоннам и между собой (по высоте этажей) осуществляют электросваркой закладных стальных деталей в панелях и колоннах. Количество и места расположения стенок жесткости в каждом здании определяются расчетом и указываются в проекте.

Пространственные ядра жесткости, как правило, устраивают монолитными железобетонными, с толщиной стенок 20—40 см и более, в скользящей или переставной опалубке. В пределах ядра обычно размещаются лестнично-лифтовые узлы, вентиляционные шахты, мусоропроводы и другие коммуникации. Ядра жесткости обеспечивают (за счет выгодной статической работы) высокую жесткость здания при минимальном расходе бетона и стали по сравнению с плоскими системами связевых диафрагм. Кроме того, пространственные ядра жесткости эффективно работают и на восприятие крутящих моментов, возникающих под действием несимметричных горизонтальных (ветровых) нагрузок.

Деформационные швы. В каркасах зданий значительной протяженности устраивают деформационные (температурные) швы, которые расчленяют каркас и все опирающиеся на него конструкции на отдельные участки — блоки (рис. 63). Различают швы поперечные и продольные.

Поперечные температурные швы выполняют из сдвоенных колонн и> как правило, без вставки, т. е. без удвоения поперечных разбивоч-ньгх осей. Ось температурного шва совмещается с поперечной разбитной осью, а геометрические оси колонн (а также и опирающихся на них несущих конструкций перекрытия) смещаются с оси температур, ного шва на 500 мм. При этом на примыкающих к швам участках при. меняют плиты укороченной длины, а для заполнения промежутка между спаренными ригелями — специальные железобетонные элементы.

Рис. 63. Деформационные швы в каркасных зданиях; а — схема температурного поперечного шва (без вставки); б, в — то же, продольных швов (со вставкой); г — поперечный шов в покрытии; 1 — ось ряда; 2 — ось колонны; 3 — стальной столик; 4 ~ железобетонная вставка; 5 — железобетонная плита покрытия; 6, 7 — компенсаторы; 8 — кирпичная стенка; 9 — доска; 10 — фартук

Продольные температурные швы в зданиях с железобетонным каркасом выполняют из двух рядов колонн со вставкой между раз-бивочными осями размером 500, 1000 и 1500 мм, а в зданиях со стальным или смешанным каркасом — из одного ряда колонн.

Если в продольном температурном шве в покрытии имеются подстропильные конструкции, то для их размещения необходима привязка колонн 250 мм. Иногда температурный шов совмещают с осадочным. В таких случаях температурно-осадочный шов устраивают и в фундаментах спаренных колонн. Расстояния между температурными и температурно-осадочными швами для различных зданий и сооружений даны в соответствующих нормах проектирования.

Каркасы сооружений. Силосы. Силосные корпуса служат дл) хранения сыпучих материалов (зерна, цемента). Каркасы силосу сооружают из сборных железобетонных конструкций или из монолитного железобетона. Однако возведение монолитных силосов имеет ояд существенных недостатков: невозможность применения предварительного напряжения арматуры, термической обработки и т. д. применение монолитного железобетона осложняет производство работ в зимних условиях.

Рис. 64. Силосный корпус из сборного железобетона (поперечный разрез): 1 — крупные панели; 2 — рама; 3 — плита; 4 — кольца; 5 — шлакобетон; 6 — колонны; 7 — монолитная железобетонная плита; 8 — стеновые блоки; 9 —• пилястры в крайних блоках

В последние годы строят сборные железобетонные силосы для хранения зерна и цемента, при сооружении которых в значительной степени устранены указанные выше недостатки, свойственные монолитным силосам. В силосном корпусе для хранения зерна, состоящем Из Двух блоков по 24 банки общей емкостью 32 тыс. т, из монолитного Железобетона выполняют только фундаментную плиту, остальные конструкции — из сборного железобетона (рис. 64). Силосные банки, имеющие высоту около 30 м, состоят из железобетонных колец высотой 1480 мм, армированных сварными сетками; внутренний диаметр колец 5,7 м, толщина стенок 120 мм, масса 8,1 т.

Силосы для хранения цемента высотой около 25 м монтируют из колец высотой 1490 мм, имеющих внутренний диаметр 10 м, стенки толщиной 200 мм и массу 24 т. Для стыкования колец на их верхних торцах предусматривают трапецеидальные пазы, на нижних торцах — гребни.

Соединение колец в банки производят двумя вариантами. Первый вариант заключается в том, что кольца опираются друг на друга насухо по двум круговым площадкам. По второму варианту стык колец выполняют с зазором около 20 мм, который заполняют раствором в процессе монтажа. По окружности колец в их пазы и гребни заранее (при изготовлении) заделывают три стальные плитки-опоры, которыми кольца при установке опираются друг на друга через центрирующие прокладки. Первый вариант соединения колец значительно проще второго, но не всегда обеспечивает точную Горизонтальность стыков колец; при нем возможны местные открытые зазоры в стыках и нарушение вертикальности стен банок.

Рис. 65. Вентиляторная градирня

Соединение банок между собой по образующим выполняется путем армирования стыка вертикальными пространственными каркасами и сетками, заходящими также в горизонтальные стыки между кольцами. Бетонирование стыка осуществляется в металлической опалубке, прикрепляемой к выпускам арматуры.

Градирни. В СССР разработаны и строятся многосекционные вентиляторные градирни из сборных железобетонных унифицированных элементов (рис. 65). Наземный каркас такой градирни состоит из колонн сечением 200×200 мм, устанавливаемых на расстоянии 4 м одна от другой и связываемых между собой поперечными и продольными двухветвевыми балками длиной 8 м общим сечением 500 X 200 мм. Каждая балка имеет три гнезда для соединения с колоннами. Для установки блоков оросителей в трех нижних ярусах на балки основного каркаса укладывают промежуточные балки. Верх градирни состоит из железобетонных коротких стоек, располагаемых по наружному периметру секций градирни, балок и кровельных плит.

Статьи по теме:

  • Опоры зданий и сооружений
  • Металлические каркасы зданий и сооружений
  • Каркасы и опоры
  • Конструктивные схемы и классификация зданий и сооружений
  • Конструктивные элементы и параметры зданий и сооружений

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *