Расчет сопротивления при последовательном соединении
Перейти к содержимому

Расчет сопротивления при последовательном соединении

  • автор:

Последовательное и параллельное соединение резисторов

Последовательное соединение резисторов применяется для увеличения сопротивления. Т.е. когда резисторы соединены последовательно, общее сопротивление равняется сумме сопротивлений каждого резистора. Например, если резисторы R1 и R2 соединены последовательно, их общее сопротивление высчитывается по формуле:
R = R1 + R2.
Это справедливо и для большего количества соединённых последовательно резисторов:
R = R1 + R2 + R3 + R4 + . + Rn.

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Параллельное соединение резисторов ( формула)

Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Сопротивление из
двух резисторов:
R = R1 × R2
R1 + R2

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельных резисторов

1 = 1 + 1 + 1 + .
R R1 R2 R3

Как видно, вычислить сопротивление двух параллельных резисторов значительно удобнее.

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.
Например: десять резисторов номиналом 1 КОм и мощностью 1 Вт каждый, соединённые параллельно будут иметь общее сопротивление 100 Ом и мощность 10 Вт.
При последовательном соединении мощность резисторов также складывается. Т.е. в том же примере, но при последовательном соединении, общее сопротивление будет равно 10 КОм и мощность 10 Вт.

Последовательное и параллельное соединение резисторов

При таком соединении, через все резисторы проходит один и тот же электрический ток. Чем больше элементов на данном участке электрической цепи, тем «труднее» току протекать через него. Следовательно, при последовательном соединении резисторов их общее сопротивление увеличивается, и оно равно сумме всех сопротивлений.

Напряжение при последовательном соединении

Напряжение при последовательном соединении распределяется на каждый резистор согласно закону Ома:

Т.е чем большее сопротивление резистора, тем большее напряжение на него падает.

Параллельное соединение резисторов

Параллельное соединениеэто соединение, при котором резисторы соединяются между собой обоими контактами. В результате к одной точке (электрическому узлу) может быть присоединено несколько резисторов.

Параллельное соединение резисторов

Общее сопротивление Rобщ

При таком соединении, через каждый резистор потечет отдельный ток. Сила данного тока будет обратно пропорциональна сопротивлению резистора. В результате общая проводимость такого участка электрической цепи увеличивается, а общее сопротивление в свою очередь уменьшается.

Таким образом, при параллельном подсоединении резисторов с разным сопротивлением, общее сопротивление будет всегда меньше значения самого маленького отдельного резистора.

Формула общей проводимости при параллельном соединении резисторов:

Формула эквивалентного общего сопротивления при параллельном соединении резисторов:

Для двух одинаковых резисторов общее сопротивление будет равно половине одного отдельного резистора:

Соответственно, для n одинаковых резисторов общее сопротивление будет равно значению одного резистора, разделенного на n.

Напряжение при параллельном соединении

Напряжение между точками A и B является как общим напряжением для всего участка цепи, так и напряжением, падающим на каждый резистор в отдельности. Поэтому при параллельном соединении на все резисторы упадет одинаковое напряжение.

Электрический ток при параллельном соединении

Через каждый резистор течет ток, сила которого обратно пропорциональна сопротивлению резистора. Для того чтобы узнать какой ток течет через определенный резистор, можно воспользоваться законом Ома:

Смешанное соединение резисторов

Смешанным соединением называют участок цепи, где часть резисторов соединяются между собой последовательно, а часть параллельно. В свою очередь, смешанное соединение бывает последовательного и параллельного типов.

Общее сопротивление Rобщ

Для того чтобы посчитать общее сопротивление смешанного соединения:

  • Цепь разбивают на участки с только пареллельным или только последовательным соединением.
  • Вычисляют общее сопротивление для каждого отдельного участка.
  • Вычисляют общее сопротивление для всей цепи смешанного соединения.

Так это будет выглядеть для схемы 1:

Также существует более быстрый способ расчета общего сопротивления для смешанного соединения. Можно, в соответствии схеме, сразу записывать формулу следующим образом:

  • Если резисторы соединяются последоватеьно — складывать.
  • Если резисторы соединяются параллельно — использовать условное обозначение «||».
  • Подставлять формулу для параллельного соединения где стоит символ «||».

Так это будет выглядеть для схемы 1:

После подстановки формулы параллельного соединения вместо «||»:

Глава 50. Расчёт электрического сопротивления

Чаще всего резисторы представляют собой металлическую проволоку или полоску, для компактности намотанную на стержень (чем длинней проводник и чем меньше его поперечное сечение, тем выше сопротивление). Разумеется, сопротивление также зависит от материала, из которого изготовлен проводник. Полюбоваться на резисторы можно на рисунке 50.1. «Резисторы (с сайта РадиоКот)».

Рисунок 50.1. Резисторы (с сайта РадиоКот)

Резисторы (с сайта РадиоКот)

На электрических схемах резистор обычно изображают как прямоугольник, из которого выходят два вывода (рисунок 50.2. «Схематическое изображение резистора»).

Рисунок 50.2. Схематическое изображение резистора

Последовательное и параллельное соединение резисторов

Очевидно, имеется только две возможности для соединения двух резисторов: можно их спаять одним концом или же обоими. Первый способ называется последовательным соединением, а второй — параллельным (рисунок 50.3. «Последовательное и параллельное соединение резисторов»).

Рисунок 50.3. Последовательное и параллельное соединение резисторов

И последовательное, и параллельное соединение резисторов можно рассматривать как новый резистор. Его сопротивление можно вычислить, пользуясь следующими правилами:

  • При последовательном соединении резисторов их сопротивления складываются: R = R 1 + R 2 .
  • При параллельном соединении резисторов складываются их проводимости, то есть величины, обратные сопротивлениям: 1 R = 1 R 1 + 1 R 2 , или R = R 1 ⁢ R 2 R 1 + R 2 .

В частности, соединяя два одинаковых резистора с единичным сопротивлением последовательно, получим сопротивление 2 , при параллельном соединении получим 1 2 .

При соединении более двух резисторов иногда удаётся представить полученную схему как последовательное или параллельное соединение двух подсхем. Например, схема на рисунке 50.4. «Смешанное соединение резисторов» представляется как параллельное соединение резистора R 1 и последовательного соединения резисторов R 2 и R 3 . Таким образом, сопротивление схемы между двумя выделенными узлами вычисляется как R 1 ⁢ R 2 + R 3 R 1 + R 2 + R 3 .

Рисунок 50.4. Смешанное соединение резисторов

Сложное соединение резисторов

Увы, не всякая схема представляется как последовательное или параллельное соединение двух подсхем, подобно тому, как не всякое натуральное число раскладывается в произведение своих собственных делителей. Простой пример такой неразложимой схемы можно увидеть на рисунке 50.5. «Сложное соединение резисторов».

Рисунок 50.5. Сложное соединение резисторов

Для расчёта таких сопротивлений используют, помимо закона Ома, ещё и закон сохранения заряда.

Электрический ток в проводнике можно представлять себе как поток частиц, несущих электрические заряды (это могут быть электроны или ионы). Причиной такого движения заряженных частиц является разность электрических потенциалов на концах проводника (напряжение). Сама по себе величина потенциала в отдельно взятой точке схемы не имеет физического смысла, такой смысл есть только лишь у разности потенциалов в двух точках (точно так же лишена смысла потенциальная энергия силы тяжести в отдельной точке, а важен перепад потенциальной энергии в двух точках). Ток — это суммарный заряд, протекающий через поперечное сечение проводника за единицу времени. Представим такую модель: по дороге из пункта A в пункт B движется поток автомобилей, каждый из которых загружен зарядом. Если заряды положительны, считается, что ток в направлении от A к B положителен. Но можно считать также, что имеется отрицательный ток (той же самой абсолютной величины) в направлении от B к A .

Закон сохранения зарядов говорит, что электрические заряды не возникают ниоткуда и не исчезают в никуда. Если электрически нейтральная частица, такая как атом, распадается на две заряженных частицы (ион и электрон), суммарный заряд новых частиц всегда равняется заряду атома, то есть нулю. Из закона следует, в частности, что токи через два поперечных сечения тонкого проводника в один и тот же момент времени равны, иначе где-то между этими сечениями рождался бы или пропадал ненулевой заряд. Другим следствием закона сохранения заряда является утверждение, что в узле электрической схемы, где соединяется несколько проводников, сумма всех входящих в узел токов равна сумме всех выходящих. Если вернуться к автомобильной аналогии, количество автомобилей, въезжающих на перекрёсток нескольких дорог, равно количеству выезжающих с перекрёстка (здесь, конечно, предполагается, что каждый автомобиль везёт единичный заряд, и время, проводимое автомобилями на перекрёстке, пренебрежимо мало).

Теперь, вооружённые знаниями, рассчитаем сопротивление электрической схемы на рисунке 50.5 между отмеченными узлами. На схеме присутствуют пять резисторов и четыре узла. Пронумеруем резисторы числами от 1 до 5 и узлы числами от 1 до 4 . Порядок нумерации узлов можно выбрать совершенно произвольно. Чтобы судить о направлении тока через каждый из резисторов, следует на каждом задать направление. Это также можно сделать произвольно, однако для определённости будем считать, что положительным направлением тока будет направление от узла с меньшим номером к узлу с большим. Обозначим потенциалы в узлах буквой U с соответствующим индексом. Результат всех этих приготовлений представлен на рисунке 50.6. «Разметка схемы».

Рисунок 50.6. Разметка схемы

Пропустим электрический ток через узлы с номерами 1 и 2 . Из закона сохранения заряда ток, входящий в узел 1 , равен току, выходящему из узла 2 . Если взять величину тока, равную единице, в силу закона Ома разность потенциалов U 2 − U 1 будет равна в точности искомому сопротивлению. Поскольку, как мы помним, имеют значения лишь разности потенциалов, мы можем смело положить U 1 = 0 , и тогда U 2 окажется искомым сопротивлением схемы.

Обозначив как I α ток через резистор R α , для каждого из резисторов запишем закон Ома: R 1 ⁢ I 1 = U 3 − U 1 , R 2 ⁢ I 2 = U 4 − U 1 , R 3 ⁢ I 3 = U 4 − U 3 , R 4 ⁢ I 4 = U 3 − U 2 , R 5 ⁢ I 5 = U 4 − U 2 .

Вторая группа уравнений получается из закона сохранения заряда. Для каждого узла сумму входящих в него токов приравниваем сумме выходящих. При этом не забываем про единичный ток, входящий в первый узел и выходящий из второго: 1 = I 1 + I 2 , 0 = 1 + I 4 + I 5 , I 1 + I 4 = I 3 , I 2 + I 3 + I 5 = 0 .

Добавив к составленным уравнениям ещё одно, U 1 = 0 , решаем полученную систему относительно U 2 .

Между прочим, применяя описанную методику к последовательному и параллельному соединениям резисторов, мы с удовольствием убедились в правильности формул сложения сопротивлений и проводимостей.

Пора заметить, что все полученные уравнения являются линейными алгебраическими по отношению ко всем неизвестным величинам I α и U β . Мы не станем задаваться вопросом о единственности решения такой системы уравнений. Отметим лишь, что существует единственное значение U 2 , удовлетворяющее системе. Об этом говорит физический смысл уравнений.

Задача расчёта электрического сопротивления является довольно актуальной. Имеется ряд приёмов, которые позволяют упростить её решение. К примеру, правила Кирхгофа позволяют строить системы уравнений, равносильные только что полученным, и при этом, как правило, более простые. Есть методы, в основе которых лежат преобразования схем в эквивалентные (то есть имеющие то же сопротивление), но при этом разложимые в последовательное или параллельное соединение двух подсхем. Мы не будем останавливаться на этих методах. В главе 49. «Линейные уравнения» рассматривалось алгоритмическое решение систем линейных уравнений, и нам остаётся лишь воспользоваться уже написанным библиотечным модулем.

Готовая программа Постановка задачи

СОЕДИНЕНИЕ РЕЗИСТОРОВ

Резисторы между собой могут быть соединены двумя основными способами: последовательно и параллельно. Смешанное соединение резисторов является их комбинацией.

Сочетания любых соединений резисторов можно привести к одному резистору, расчетом сопротивления которого (R) мы сейчас займемся.

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

Параллельное соединение резисторов

Давайте рассчитаем общее сопротивление такой цепи (рисунок 1). Для этого нам понадобится закон Ома — I=U/R и закон Кирхгофа — I=I1+I2+..In

Последняя формула является основной для расчета сопротивления цепи параллельно соединенных резисторов. Для двух резисторов ее можно записать более удобно: R=(R1*R2)/(R1+R2) .

Отсюда следует, что в случае параллельного соединения двух одинаковых по номиналу резисторов ( R1=R2 ) их общее сопротивление будет вдвое меньше любого из них. Это полезно помнить.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

Последовательное соединение резисторов

Используя уже упомянутые законы для цепи последовательно соединенных резисторов (рисунок 2) можем записать:

То есть общее сопротивление резисторов при последовательном соединении равно сумме их сопротивлений.

СМЕШАННОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

Такое соединение всегда можно представить как комбинацию последовательного и параллельного соединений (рис.3).

Смешанное соединение резисторов

  1. последовательное сопротивление резисторов Rпосл=R1+R2
  2. параллельное соединение R=(Rпосл*R3)/(Rпосл+R3)

Безусловно, могут встретиться более сложные варианты, но методика расчета их сопротивления та же.

  1. Отсутствие «под рукой» резистора нужного номинала. При этом следует помнить, что погрешности резисторов будут суммироваться. Например, для рисунка 3.a, если фактическая погрешность R1 составляет +10%, а R2 имеет +15%, то для Rпосл она будет +25%. Здесь следует обращать внимание на знак, то есть для -10% и +15% в результате получим +5%.
  2. Необходимость получить большую мощность. Здесь надо учесть, что при одинаковых номиналах сопротивлений и мощностей соединяемых резисторов, как при последовательном, так и при параллельном их соединении итоговая мощность будет равна сумме мощностей. В противном случае следует ее рассчитать, используя закон Ома и формулу для определения рассеиваемой мощности P=I*U .

Про мощность и номиналы резисторов можно почитать здесь.

© 2012-2024 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *