Какова скорость света в воде?
Способ определения скорости света в движущейся прозрачной среде заключается в измерении скорости движения среды и коэффициента преломления света в ней. Скорость света в движущейся прозрачной среде определяют из выражения:
W=c(1-v/c)/
Скорость света в вакууме с=300000 км/с. Скорость света в воде u=с/n » 225 000 км/с, где n = 1,33 – коэффициент преломления воды.
Источник: http://radiy-tn.narod.ru/
Остальные ответы
Скорость света в воде — примерно на 25% меньше, чем в воздухе
3. Скорость распространения света в воде v_1 = 2.250 ⋅ 10^5 км/с, а в стекле — v_2 = 1.982 ⋅ 10^5 км/с. Определите отношение k показателей преломления стекла и воды.
Абсолютные показатели преломления воды и стекла соответственно равны :
n 1 = c v 1 ; n 2 = c v 2 . n_1=\dfrac; n_2=\dfrac. n 1 = v 1 c ; n 2 = v 2 c .
Отсюда найдём искомое отношение:
k = n 2 n 1 = c v 2 ⋅ v 1 c = v 1 v 2 . k=\dfrac=\dfrac\cdot \dfrac=\dfrac. k = n 1 n 2 = v 2 c ⋅ c v 1 = v 2 v 1 .
k = 2.250 ⋅ 1 0 5 1.982 ⋅ 1 0 5 ≈ 1.135. k=\dfrac\approx 1.135. k = 1.982 ⋅ 1 0 5 2.250 ⋅ 1 0 5 ≈ 1.135.
Ответ: k = 1.135. k=1.135. k = 1.135.
Присоединяйтесь к Telegram-группе @superresheba_11, делитесь своими решениями и пользуйтесь материалами, которые присылают другие участники группы!
Скорость распространения света в воде
Доброго времени суток .
Нашел на просторах инета интересную статью, решил поделиться
Если знать спектр света ламп, то можно самостоятельно подобрать набор ламп для своего аквариума, будь он травник или цихлидник к примеру.
Распространение света в воде
Преломление света. На границе водной и воздушной среды проявляется эввект рефракции света, то есть преломления.
Поскольку воздух, стекло и вода имеют разную плотность, свет проходит через них с разной скоростью. Скорость распространения света в воде примерно на 25% ниже, чем в атмосфере. При прохождении границы между любыми двумя средами лучи света будут преломляться (если только не будут пересекать эту поверхность под прямым углом). В результате при прохождении светом границ воды, стекла и воздуха, образуемых маской дайвера. у последнего будет складываться неверное представление о расстояниях (в соотношении примерно 3:4) с эффектом увеличения на треть. Так. если объект находится на расстоянии 4 м, дайверу будет казаться, что до него 3 м и что он примерно в 1,33 раза больше, чем на самом деле (степень увеличения зависит от расстояний между объектом и стеклом маски и между стеклом и глазом) Коэффициент преломления воды равен 1.33. а воздуха — 1.00, поэтому 1,33 — максимально возможное увеличение. Кроме того, объекты кажутся ближе только на небольшом расстоянии. По ряду причин при более значительном расстоянии человек склонен его переоценивать.
Человеческий глаз воспринимает лишь небольшой участок спектра электромагнитного излучения (от самых длинных радиоволн до гамма-излучения с самой малой длиной волны). Различия в длине волны воспринимаются как разные цвета.
Когда свет падает на объект, волны одной длины поглощаются, а другой — отражаются. Глаз определяет цвет объекта в зависимости от длины отраженных волн видимой части спектра. Если отражаются все волны видимой части спектра, объект видится белым; если лишь немногие, объект воспринимается как черный. Некоторые объекты под действием коротких волн излучают волны большей длины видимого спектра. Этот эффект именуется флуоресценцией и не только используется при производстве дайверского снаряжения ради лучшей видимости, но и может наблюдаться ночью у некоторых видов планктона, актиний и кораллов.
По мере проникновения света в глубь воды волны разной длины последовательно отфильтровываются. Первыми меркнут обладающие наименьшей энергией цвета красного участка видимого спектра, затем следуют волны оранжевого и желтого цветов, далее — зеленого и наконец — синего. На глубине красные, оранжевые и желтые объекты кажутся серыми или черными и обретают присущий им цвет только при использовании дай весом искусственных источников света.
Количество преломлённого в воде света зависит от угла падения лучей, состояния водной поверхности и степени рассеяности света
Световые волны, воспринимаемые человеческим глазом как синие, проникают в воду дальше всего в любом направлении. Взвешенные в воде вещества, как органические, так и неорганические, вызывают ее помутнение, а в замутненной воде наибольшей проникающей способностью обладают световые волны, воспринимаемые как желто-зеленые. Таким образом, если в прозрачной воде преобладает синий цвет, то в замутненной — желто-зеленый.
Даже прозрачная вода рассеивает, преломляет и поляризует свет, уменьшает тени и сглаживает контрасты. Поскольку легче разглядеть объекты, выделяющиеся на каком-то фоне, избирательное восприятие цветов определяет, какие цвета контрастируют друг с другом. Отсутствие контраста снижает четкость восприятия мелких деталей в воде гораздо сильнее, чем в воздушной среде. Искажения усиливаются с увеличением дистанции, которую свет проходит в воде — главным образом из-за того, что с увеличением расстояния между объектом и глазом формирующий изображение свет все больше рассеивается.
Фотоны света при столкновении со взвешенными в воде частицами отклоняются от траектории своего движения. То, как свет рассеивается при взаимодействии с веществами, зависит от размера частиц вещества. Согласно закону рассеяния, выведенному лордом Рэлеем. угол рассеивания солнечного света в атмосфере при его взаимодействии с молекулами составляющих атмосферу газов обратно пропорционален четверти интенсивности волны той или иной длины. Потому коротковолновый синий свет рассеивается гораздо лучше, нежели длинноволновый красный. Вот почему при солнечной погоде мы воспринимаем цвет неба как голубой, а цвет прозрачной волы — как синий.
Глаз адаптируется к сумеречной водной среде, и. когда зрачок максимально открывается, мозг переключается на зрительные рецепторы, которые более чувствительны к свету и менее чувствительны к цветам. Потому в сумерках мы плохо различаем цвета. Хотя порой дайверы перед погружением проводят от 15 до 30 минут в затемненном помещении, это не помогает им видеть под водой более мелкие детали и лучше различать цвета.
Количество света, проникающего в воду, зависит также от времени суток. Когда солнце стоит высоко в небе, обычно с 10.00 до 14.00 по местному времени, большее количество света пробивается сквозь поверхность воды под большим утлом и проникает в толщу воды. Именно в эти часы подводные фотографы предпочитают делать панорамные снимки. Когда солнце висит низко нал горизонтом, угол падения лучей небольшой, и значительная часть света отражается от границы воды. Если небо затянуто облаками, в воду будет проникать еше меньше света.
При взгляде из-под воды вверх дайвер может также видеть отражение от поверхности раздела воды и воздуха. Поверхность воды может иметь вид темного поля с ярким кругом прямо над головой. Этот круг, сквозь который видно небо, носит название люка Снеллиуса. Поле вокруг него — обратное рассеяние света, отраженного от более глубоких вод.
Когда водная поверхность покрыта рябью, блики яркого света беспрестанно вспыхивают на подводных объектах и на дне (эффект мятой фольги). Происходит это оттого, что волны работают как линзы. Гребень волны действует как увеличительное стекло, концентрирующее свет в виде яркого пятна. Подошва волны превращается в линзу с отрицательными диоптриями и рассеивает свет, образуя темные участки.
Продолжение следует, буду искать характеристики ламп продаваемые в наших хоз магазинах.
свет в воде.jpg (22.7 Кб, 9)
свет в воде 2.jpg (57.8 Кб, 12)
свет в воде 3.jpg (36.7 Кб, 11)
§ 14. Электромагнитная природа света
С античных времен считалось, что свет практически мгновенно преодолевает любые расстояния. Вопрос о природе света долгое время также оставался открытым. Какими свойствами обладает свет? Как была измерена скорость его распространения?
Чем меньше скорость распространения света в среде, тем среда является оптически более плотной.
Оптика — раздел физики, в котором изучается физическая природа и свойства света, а также его взаимодействие с веществом. Соответственно световые явления часто называют оптическими явлениями. Слово оптика произошло от греч. οπτικος (оптикос) — видимый, зрительный, поскольку основную часть информации о природе и происходящих в ней явлениях человек получает посредством зрительных ощущений, возникающих под действием света.
По количеству и качеству информации, получаемой человеком об окружающем мире, зрение намного превосходит слух. Этот факт обусловлен существенным различием длин волн видимого света (λ < 10 -6 м) и слышимого звука (λ >10 -2 м).
Известно, что минимальные размеры изображения, создаваемого посредством волнового процесса, сравнимы с соответствующей длиной волны. Следовательно, оптические изображения, создаваемые на сетчатке глаза человека, могут содержать до 10 7 — 10 8 независимых элементов изображения с различной интенсивностью световых сигналов, передающих большое количество информации об окружающих нас объектах.
Под светом в оптике понимают электромагнитные волны, длины волн которых находятся в диапазоне от 2,0 мм до 10 нм. Этот диапазон делится на инфракрасный (2,0 мм—0,75 мкм), видимый (от 750 нм до 380 нм) и ультрафиолетовый (380 нм—10 нм) диапазоны.
Современная оптика основана на электромагнитной теории света. Как вам известно (см. § 12), во второй половине XIX в. Дж. Максвелл доказал возможность распространения электромагнитных волн в вакууме. Согласно выводам из его теории свет имеет электромагнитную природу, поскольку скорость его распространения равна скорости электромагнитных волн в вакууме.
Первые попытки измерения скорости света, предпринятые в начале XVII в. Г. Галилеем и другими учеными, не увенчались успехом в силу недостаточной точности измерения времени (хронометрирования). Из результатов этих экспериментов Галилей сделал вывод, что измерить модуль скорости света на малых расстояниях практически невозможно, поскольку свет преодолевает их мгновенно в силу большого значения скорости распространения.
Декарт одним из первых предложил использовать для измерения модуля скорости света огромные (астрономические) расстояния, на преодоление которых свету потребуется значительное время, которое можно измерять с достаточной точностью.
Исторически первое экспериментальное определение модуля скорости света в вакууме в 1672 г. сделал датский астроном Олаф Рёмер, который проводил систематические наблюдения в телескоп затмений спутника Юпитера — Ио. Примерно через полгода после начала наблюдений он заметил, что момент затмения спутника Ио запаздывает почти на 16 мин по сравнению с вычисленным значением. Рёмер объяснил это запаздывание конечностью скорости распространения света. Действительно, поскольку за полгода Земля переместилась из положения I (рис. 82) в положение II, то свету необходимо пройти добавочное расстояние, примерно равное диаметру земной орбиты. А при конечности скорости света для этого необходимо больше времени.
На основании имевшихся в то время данных о диаметрах орбит Земли и Юпитера он получил для скорости света значение:
Американский физик Альберт Майкельсон в 1926 г. для измерения скорости света использовал установку, в которой свет проходил между двумя горными вершинами. Он получил значение скорости света, близкое к современным данным:
В 1972 г. скорость света была определена на основе независимых измерений длины волны и частоты света. Это позволило значительно повысить точность измерений. В качестве источника был выбран гелий-неоновый лазер. Таким образом, было получено значение скорости света, превосходящее по точности все ранее известные значения более чем на два порядка. Ввиду этого в 1983 г. на 17-й Генеральной конференции по мерам и весам значение скорости света в вакууме принято равным
Заметим, что при решении задач, как правило, используют приближенное значение модуля скорости света: