В чем изменяется реактивная мощность
Перейти к содержимому

В чем изменяется реактивная мощность

  • автор:

Еще раз про мощность: активную, реактивную, полную
(P, Q, S), а также коэффициент мощности (PF)

Печать

27.01.2012 15:13 |

Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007

В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:

Мощность не всех приборов указана в Вт, например:

  • Мощность трансформаторов указывается в ВА:
    http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
    http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение)
  • Мощность конденсаторов указывается в Варах:
    http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
    http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение)
  • Примеры других нагрузок — см. приложения ниже.

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).

Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

  1. Активная мощность: обозначение P, единица измерения: Ватт
  2. Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный)
  3. Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
  4. Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина

Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S

Также cosФ называется коэффициентом мощности (Power FactorPF)

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
(примеры технических данных разных нагрузок см. приложение ниже)

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. – при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

См. учебники по электротехнике, например:

1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)

Приложение

Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)

Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)

b_671_0_16777215_0___images_stories_reference_tech-articles_pqs-again_003.png

http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)

b_230_0_16777215_0___images_stories_reference_tech-articles_pqs-again_008.jpg

http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)

Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)

http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)

http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)

Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ

Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).

http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)

http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)

Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ)

http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)

Дополнение 1

Если нагрузка имеет высокий коэффициент мощности (0.8 . 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.

Если нагрузка имеет низкий коэффициент мощности (менее 0.8 . 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.

Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.

Дополнение 2

Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др.) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 . 1.0, что соответствует нормативным стандартам.

Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения

Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.

В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.

Дополнение 4

Наглядные примеры чистой активной и чистой реактивных нагрузок:

  • К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
  • К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5

Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:

+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.

— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.

Дополнение 6

В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.

Дополнительные вопросы

Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?

Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].

Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:

  1. Полное сопротивление (импеданс) Z=R+iX
  2. Полная мощность S=P+iQ
  3. Диэлектрическая проницаемость e=e’+ie»
  4. Магнитная проницаемость m=m’+im»
  5. и др.

Вопрос 2:

На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?

Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.

Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.

Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:

См. дополнительную литературу, например:

[1]. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.

[2]. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.

[3]. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.

[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)

[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013

[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН

Реактивная мощность и cos фи

Рассмотрим такие понятия, как: реактивная мощность, коэффициент мощности ( cos фи), низкое значение Cos FI и способы его повышения.

Что такое реактивная мощность?

Коэффициент мощности cos фи (φ) определяется как отношение полезной мощности к полной. Математически это определение часто записывают в виде кВт/кВА, где числитель – активная (действительная) мощность, а знаменатель – кажущаяся (активная + реактивная, полная) мощность. И хотя определение выглядит весьма простым, само понятие реактивной мощности весьма зачастую туманно и запутанно даже для людей с неплохой технической подготовкой.

Объяснение понятия реактивной мощности основывается на том, что в системе переменного тока в случае, когда напряжение и ток возрастают и уменьшаются одновременно, передается только активная мощность, а когда между током и напряжением есть сдвиг во времени (сдвиг по фазе), передается как активная, так и реактивная мощность. Однако, при расчете среднего за период значения, присутствует только среднее значение активной мощности, которое приводит к «чистой» передаче энергии из одной точки в другую, тогда как среднее значение реактивной мощности равно нулю, независимо от структуры и режима работы системы.

В случае реактивной мощности количество энергии, протекающее в одном направлении равно количеству энергии, протекающему в противоположном направлении (иначе говоря, реактивные элементы сети – конденсаторы, индуктивности и др. – обмениваются реактивной энергией). Это означает, что реактивная мощность не производится и не потребляется.

Но, в действительности, мы наблюдаем потери реактивной мощности и внедряем много различного оборудования для ее компенсации, чтобы уменьшить потребление электроэнергии и затраты.

Заблуждения о законе сохранения энергии

Закон сохранения энергии, не подвергаемый сомнению, гласит: «энергия ни откуда не возникает и никуда не исчезает», а мы все еще продолжаем говорить о «сбережении энергии»!! Заблуждения возникают тогда, когда мы рассуждаем о законе сохранения, игнорируя другие законы термодинамики, в частности закон, гласящий, что энтропия («низкосортная» энергия) постоянно увеличивается. В математическом смысле «полная» энергия не имеет значения для потребителя энергии, следовательно, он должен заботиться об эффективности ее преобразования и сохранения. Точно так же, несмотря на то, что мы можем доказать математически, что потери реактивной мощности не являются реальными потерями и реактивная энергия вообще не тратится, у нас есть целый ряд причин для коррекции реактивной мощности. Это проще объяснить на основе физических аналогий.

Физические аналогии

Предположим, нам надо заполнить водой резервуар, выливая по одному ведру за раз. Единственный способ сделать это – подняться по лестнице с ведром воды и вылить ведро в емкость. Вылив ведро, мы должны спуститься по лестнице за следующим ведром. За этот цикл (подъем по лестнице и спуск) мы проделали определенную работу, причем энергия, затраченная на подъем, больше энергии, требуемой для спуска.

Если бы мы поднялись по лестнице с пустым ведром и с ним же спустились, то мы не совершили бы никакой работы. Но энергия для подъема и спуска осталась бы такой же. И хотя мы не совершали никакой полезной работы, мы затратили некоторое количество энергии.

Таким образом, энергия, необходимая на подъем и спуск по лестнице с пустыми руками, требует реактивной мощности, но не полезной. А энергия, затраченная на подъем с ведром воды и спуск с пустым ведром, требует как активной мощности, так и реактивной.

Аналогия может быть распространена и на трехфазные системы, если поставить три лестницы к резервуару и заставить трех человек подниматься по ним в такой последовательности, чтобы наполнение резервуара было непрерывным.

Что вызывает низкий коэффициент мощности cos φ (cos фи) в электрической системе?

Перечислим некоторые причины, которые способствуют возникновению в системе низкого коэффициента мощности:

  • индуктивные нагрузки, особенно недогруженные асинхронные двигатели и трансформаторы;
  • индукционные печи и дуговые печи с реакторами;
  • дуговые лампы;
  • токоограничивающие реакторы;
  • повышенное напряжение.

Реактивная мощность, потребляемая этими нагрузками, увеличивает значение полной мощности в распределительной сети, и такое увеличение реактивной и полной мощности вызывает снижение коэффициента мощности.

Как повысить коэффициент мощности cos φ?

Коэффициент мощности можно повысить путем дополнительного подключения в сеть потребителей реактивной мощности, таких как конденсаторы или асинхронные двигатели.

Также его можно увеличить за счет полного использования по нагрузке асинхронных двигателей и трансформаторов и за счет применения высокоскоростных двигателей. Применение автоматической системы переключения отводов обмоток трансформаторов также способствует повышению коэффициента мощности.

При каких обстоятельствах коррекция коэффициента мощности способна:

а) снизить потребление электроэнергии на предприятии?
Повышение коэффициента мощности cos фи (cos φ) на предприятии за счет внедрения любого из вышеупомянутых способов компенсирует потери и уменьшает токовые нагрузки на оборудование электросети, т.е. кабели, распределительные коммутационные устройства, трансформаторы, генерирующие установки и т.д. Это означает, что коррекция коэффициента мощности cos фи там, где она возможна, уменьшит потребление электроэнергии на предприятии и, в свою очередь, снизит стоимость электроэнергии.

Повышение коэффициента мощности cos φ приводит к снижению энергопотребления, когда коррекция реализована на уровне отдельных потребителей (т.е. оборудования) или на уровне распределительного устройства. Но это не приведет к снижению энергопотребления, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети. Если предприятие осуществляет такую коррекцию для своей собственной системы генерации электроэнергии, то в этом случае экономия на стоимости (либо электроэнергии, либо стоимости топлива) будет иметь место за счет снижения потерь в генераторе.

б) сократить только затраты на электроэнергию?
Коррекция коэффициента мощности cos φ (cos фи) приведет только к уменьшению стоимости электроэнергии в случае, если предприятие, получающее энергию из общей сети, вынесет коррекцию на уровень питающего/входного напряжения только для того, чтобы скомпенсировать реактивную энергию, потребляемую из сети.

Как правило, cos фи повышают до значения 0.95-0.98, а дальнейшее его повышение до единицы может привести к увеличению срока окупаемости мероприятий по коррекции.

в) снизить затраты и потребление электроэнергии?
Во всех остальных случаях, кроме вышеописанных исключений, повышение коэффициента мощности в конечном итоге приводит к снижению потребления энергии и, следовательно, к снижению стоимости электроэнергии. Однако окупаемость инвестиций за счет повышения коэффициента мощности зависит от типа предприятия и многих других факторов, таких как тариф на электроэнергию, схемы загрузки оборудования, метода производства и использования мощности и т.д.

Коррекция коэффициента мощности cos фи осуществляется за счет индивидуальной или групповой коррекции.

увеличение нагрузочной способности распределительной сети

удельная стоимость (на квар) конденсаторов малых габаритов выше, чем стоимость больших конденсаторов

возможность аппаратного отключения, не требуется дополнительных коммутаций

экономическая целесообразность обычно до 10 л.с.

лучше стабилизация напряжения

затрудненная установка в местах с особыми требованиями (пожаробезопасные и защищенные исполнения)

простота определения типоразмера конденсатора

необходимость в дополнительном оборудовании для обслуживания

конденсаторы, встроенные в оборудование,
могут быть перемещены во время реконструкции

если номинал конденсатора слишком велик – больше, чем мощность намагничивания двигателя, возможно повредить двигатель и другое подключенное оборудование

увеличение нагрузочной способности системы энергоснабжения

необходимость в коммутирующих устройствах для управления величиной емкости

снижение материальных затрат по сравнению с индивидуальной коррекцией

необходимость в индивидуальных коммутирующих устройствах

сокращение количества оборудования для обслуживания / простота доступа для контроля

отсутствие снижения потерь в кабелях ниже
точки коррекции

исключение самовозбуждения асинхронных двигателей из-за высокого значения емкости

высокий срок окупаемости

уменьшение удельной цены на квар для устройств больших типоразмеров

отсутствие вклада в увеличение срока службы/эффективности оборудования

простота регулирования нагрузки энергосистемы; коэффициент мощности cos φ может быть приближен к единице

опережающий коэффициент мощности на предприятиях с собственной генерацией электроэнергии при неправильной коммутации

возможность установки на подстанциях и, следовательно, возможность применения на опасных объектах

вероятность непосредственной коммутации емкостной нагрузки при отключении электроэнергии

В чем изменяется реактивная мощность

  • Работа в компании
  • Закупки
  • Библиотека
  • Охрана труда
  • Рус / Eng
  • О заводе
  • Каталог
    • Установки компенсации реактивной мощности
      • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
      • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
      • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
      • Комплектующие для конденсаторных установок
      • Серия PSPE1 (однофазные конденсаторы)
      • Серия PSPE3 (трехфазные конденсаторы)
      • Конденсаторы серии AFC3
      • Конденсаторы серии FA2
      • Конденсаторы серии FA3
      • Конденсаторы серии FB3
      • Конденсаторы серии FO1
      • Конденсаторы серии PO1
      • Конденсаторы серии SPC
      • Серия K78-99 (пластиковый корпус)
      • Серия К78-99 A (алюминиевый корпус)
      • Серия К78-99 AP2 (взрывозащищенный)
      • Серия К78-98 (пластиковый корпус)
      • Серия К78-98 A (алюминиевый корпус)
      • Серия К78-98 АР2 (взрывозащищенный)

      rezident

      • офис: с 9 00 до 17 30
      • склад: с 9 00 до 17 00

      +7 (925) 517-34-27 (отдел продаж);

      +7 (495) 744-31-71 (отдел продаж);
      +7 (926) 673-77-58 (отдел персонала).

      • Охрана труда
      • Установки компенсации реактивной мощности
        • Регулируемые конденсаторные установки КРМ (АУКРМ) — 0,4 кВ
        • Нерегулируемые конденсаторные установки КРМ (УКРМ ) — 0,4 кВ
        • Тиристорные конденсаторные установки КРМТ (АУКРМТ) — 0,4 кВ
        • Комплектующие для конденсаторных установок
        • Серия PSPE1 (однофазные конденсаторы)
        • Серия PSPE3 (трехфазные конденсаторы)
        • Конденсаторы серии AFC3
        • Конденсаторы серии FA2
        • Конденсаторы серии FA3
        • Конденсаторы серии FB3
        • Конденсаторы серии FO1
        • Конденсаторы серии PO1
        • Конденсаторы серии SPC
        • Серия K78-99 (пластиковый корпус)
        • Серия К78-99 A (алюминиевый корпус)
        • Серия К78-99 AP2 (взрывозащищенный)
        • Серия К78-98 (пластиковый корпус)
        • Серия К78-98 A (алюминиевый корпус)
        • Серия К78-98 АР2 (взрывозащищенный)

        Сертификаты
        ЗАДАТЬ ВОПРОС
        ЗАДАЙТЕ ВОПРОС ONLINE
        на Ваши вопросы ответят профильные специалисты
        ЗАДАТЬ ВОПРОС
        Спасибо за интерес, проявленный к нашей Компании

        • Словарь терминов
        • Реактивной мощности измерение

        Реактивной мощности измерение
        Отправить другу

        Измерение реактивной мощности осуществляется с помощью специального прибора варметра, также можно определить косвенным методом с помощью ряда приборов вольтметра, амперметра, фазометра.

        Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электрооборудование изменениями энергии электромагнитного поля в цепях переменного тока:

        Q = UIsin φ

        Единица измерения реактивной мощности — вольт-ампер реактивный (вар).. Реактивная мощность в электрических сетях вызывает дополнительные активные потери и падение напряжения. В электра установках специального назначения (индукционные печи) реактивная мощность значительно больше активной. Это приводит к увеличению реактивной составляющей тока и вызывает перегрузку источников электроснабжения. Для устранения перегрузок и повышения мощности коэффициента электрических установок осуществляется компенсация реактивной мощности.

        НЕОБХОДИМА КОНСУЛЬТАЦИЯ?
        или заполните простую форму

        Чтобы правильно определить необходимое значение мощности установки компенсации реактивной мощности надо произвести измерения в электросети.

        Применение современных электрических измерительных приборов на микропроцессорной технике позволяет производить более точную оценку величины энергии в сети.

        Анализатор качества энергии и параметров сети потребителей является универсальной измерительной системой, предназначенной для измерения, хранения в памяти и контроля электрических параметров в электросетях с низким и средним напряжением. Измерение осуществляется в однофазных и трёхфазных сетях. Одним из главных достоинств анализатора качества энергии и параметров сети потребителей являются высокая точность измерений, компактные размеры и возможность измерения гармоник тока и напряжения в сети. Один анализатор качества энергии и параметров сети потребителей совмещает в себе 13 различных измерительных приборов: амперметр, вольтметр, ваттметр, измерители реактивной и полной мощности, коэффициента мощности cos φ, частотомер, анализатор гармоник тока и напряжения, счётчики активной, реактивной и полной потребляемой электроэнергии. Трёхфазная электронная измерительная система прибора измеряет и оцифровывает действующие значения напряжения и тока в трёхфазной сети с частотой 50/60 Гц. Прибор производит 2 измерения в течение секунды. Из полученных значений микропроцессором высчитываются электрические параметры. Максимальные, минимальные значения параметров и программные данные сохраняются в памяти. Выбранные измеряемые значения, а также данные о перебоях в сети записываются в буферную память с указанием даты и времени. После чего данную информацию можно просмотреть и проанализировать на мониторе компьютера или распечатать на принтере.

        Что такое реактивная мощность

        Реактивной мощностью называют физическую величину, характеризирующую те нагрузки, которые появляются в электроустановках вследствие колебаний энергии электромагнитного поля, возникающего при использовании синусоидального тока. Если выражаться более просто, то реактивная мощность в цепи переменного тока — это та энергия, которую реактивные элементы приемника получают от источника и возвращают ему назад за время одного колебания. Данная мощность не преобразуется ни в механическую, ни в тепловую энергию и не выполняет никакой полезной работы. Из-за нее происходят лишь потери энергии в процессе передачи.

        Определение реактивной мощности

        Определение реактивной мощности

        Что такое реактивная мощность

        Функционирование любого электротехнического устройства невозможно без энергии генератора, которая преобразовывается в полезную работу. Но в процессе взаимодействия этого устройства с электроэнергией неизбежно возникает электромагнитное поле. Поэтому электроэнергия затрачивается не только на полезную, но и на бесполезную работу, то есть, на создание электрического и магнитного поля. Электрическое поле способны создавать такие элементы, как конденсаторы, а магнитное — двигатели и трансформаторы, поскольку в них присутствуют индуктивности. Реактивный протекающий ток греет питающие проводники.

        В ходе рабочего процесса электроустройства магнитные и электрические поля непрерывно обмениваются энергией. В этом обмене принимает участие и сам генератор, то есть, электроустройство не только потребляет энергию, но и частично отдает ее обратно генератору. Количество потребляемой электроэнергии за единицу времени называют мощностью или же можно сказать, что мощность — это скорость потребления устройством электроэнергии.

        Как рассчитывается

        В цепи переменного тока выделяют активную, реактивную и полную мощность. Последняя представляет собой сумму полезной и бесполезной работы. Формула для определения полной мощности выглядит так:

        Вычисление полной мощности

        Вычисление полной мощности

        Активная мощность связана только с полезной работой. Для ее вычисления используют следующее выражение:

        Формула АМ

        Формула АМ

        Реактивная мощность переменного тока отображает бесполезную работу. Для ее расчета используется уравнение:

        Уравнение для РМ

        Уравнение для РМ

        Активная, реактивная и полная мощность связаны таким выражением:

        Соотношение мощностей

        Соотношение мощностей

        Полная мощность измеряется в вольт-амперах: 1ВА = 1В × 1А. Единица измерения реактивной мощности — вольт-ампер реактивный: 1вар = 1В × 1А, а активной мощности — ватт.

        Векторная диаграмма мощностей

        Наличие реактивной мощности характеризируется коэффициентом мощности cos , который представляет собой соотношение активной и полной мощности в цепи. Зависимость между полной, активной и реактивной мощностями можно представить векторной диаграммой, получившей название треугольник мощностей. Теорема Пифагора и треугольник мощностей позволяют довольно просто решить задачу, как найти активную, реактивную или полную мощность.

        Треугольник мощностей

        Треугольник мощностей

        Следует отметить, что:

        Виды мощности, потребляемой различными элементами

        Виды мощности, потребляемой различными элементами

        Активная и реактивная составляющие переменного тока оцениваются по коэффициенту мощности. Например, если на каком-либо электроустройстве написано, что его мощность 500 Вт, а cos = 0.8, то это означает, что из сети устройство возьмет мощность 500/0.8 = 625 Вт, а работу выполнит на 500 Вт.

        Почему появляется сдвиг фазы

        Если устройство потребляет только активную мощность, то ток и напряжение совпадают по фазе. Если же в цепи присутствуют потребители реактивной мощности (емкости и индуктивности), тогда между током и напряжением появляется сдвиг фазы, значение которого может находиться в диапазоне от 0 до 90 градусов. В идеальных конденсаторах напряжение отстает от тока на 90 градусов, а в идеальных индуктивностях опережает его на такое же значение. Чем больше значение фазового сдвига, тем больше будет реактивная мощность.

        Графики параметров разных видов цепей

        Графики параметров разных видов цепей

        Чисто активным (резистивным) характером нагрузки отличаются лампы накаливания, электроплиты и другие нагревательные электроприборы. Основные источники реактивной мощности индуктивного характера — электродвигатели и трансформаторы, а емкостного — различные электронные устройства, в которых конденсаторы используются в качестве накопителей энергии.

        Если к сети переменного тока подключить активное сопротивление, например, нагревательный прибор, то фазового сдвига между напряжением и током не произойдет. Это связано с тем, что моментальное значение мощности представляет собой произведение моментальных значений тока и напряжения, а они в данном случае находятся в одной фазе, то есть, имеют одинаковые знаки. Следовательно, активная мощность при наличии активной нагрузки будет всегда положительна.

        Мощность при наличии омической нагрузки

        Мощность при наличии омической нагрузки

        Отрицательные значения мощности возникают при условии, что один из сомножителей меньше нуля. Если сдвиг фаз равен 90 градусам, то площадь положительных и отрицательных зон на графике будет совпадать. Активная мощность в данном случае имеет нулевое значение и в цепи присутствует только реактивная мощность. Следовательно, энергия не выполняет работу, а только перемещается от генератора к потребителю и обратно.

        Мощность при наличии реактивной нагрузки

        Мощность при наличии реактивной нагрузки

        Компенсация реактивной мощности

        Из-за фазового сдвига активная мощность уменьшается, поскольку та часть электроэнергии, которую выделяют источники реактивной мощности, просто циркулирует в энергосистеме и расходуется на создание магнитного поля, не совершая при этом ничего полезного. Именно это обстоятельство становится причиной того, что для полноценной работы оборудования требуется ток большей силы. К тому же все проводники имеют активное сопротивление, поэтому циркуляция больших токов в цепи приводит к их нагреву и, следовательно, к потерям электроэнергии.

        С целью повышения коэффициента мощности применяют устройства компенсации. Их принцип действия основывается на свойстве емкостей и индуктивностей сдвигать фазу в противоположные стороны. Например, фазовый сдвиг на определенный угол при включении обмотки электромотора можно компенсировать с помощью конденсатора, сдвигающего фазу на такой же угол, но в противоположную сторону. В результате сдвиг будет нулевым.

        Благодаря конденсатору, подключенному параллельно потребителю, реактивный ток циркулирует между потребителем и конденсатором, и не создает дополнительную нагрузку на сеть. Если же с помощью компенсационного устройства удастся получить коэффициент мощности, равный 1, то в цепи будет присутствовать только активный ток.

        Схема использования компенсационного устройства

        Схема использования компенсационного устройства

        Реактивная мощность конденсатора, используемого для компенсации в однофазной сети, рассчитывается с помощью формулы:

        Расчет мощности конденсатора в однофазной сети

        Расчет мощности конденсатора в однофазной сети

        Расчет конденсатора, с помощью которого компенсируется реактивная мощность трехфазной сети, выполняется по такой формуле:

        Расчет мощности конденсатора в трехфазной сети

        Расчет мощности конденсатора в трехфазной сети

        Определение тока конденсатора в фазовом проводнике и, следовательно, реактивной мощности осуществляется с помощью таких выражений:

        Вычисление параметров в фазовом проводнике

        Вычисление параметров в фазовом проводнике

        Реактивную мощность конденсатора при соединении треугольником находят по формуле:

        Определение мощности при соединении треугольником

        Определение мощности при соединении треугольником

        И при соединении звездой:

        Определение мощности при соединении звездой

        Определение мощности при соединении звездой

        С помощью конденсаторных компенсационных установок можно существенно снизить потери электроэнергии и добиться более длительного срока работоспособности оборудования.

        Преимущества использования устройств компенсации

        Преимущества использования устройств компенсации

        Как измеряется реактивная мощность

        Измерение реактивной мощности выполняется с помощью тех же приборов, что и активной. Они называются ваттметрами. При их использовании обмотки приборов подключаются к напряжениям, сдвинутым по фазе на 90 градусов относительно тех напряжений, которые применялись при измерении активной мощности.

        Измерение реактивной мощности в симметричной системе выполняется одним ваттметром. Его обмотку напряжения подключают к линейному напряжению сети, которое отстает на 90 градусов от напряжения той фазы, к которой подключена токовая обмотка прибора.

        Для несимметричного режима трехфазной сети ваттметры можно использовать только при наличии так называемой простой асимметрии. В этом случае несимметричными являются токи (нагрузка), а напряжения (источник) — симметричными. Следует отметить, что такой режим чаще всего встречается на практике.

        Для измерения мощности в асимметричной системе применяют схемы с двумя и тремя ваттметрами. Три ваттметра обычно используют для четырехпроводной цепи.

        Схема с использованием двух ваттметров

        Схема с использованием двух ваттметров

        При измерениях в трехпроводной цепи можно обойтись двумя ваттметрами.

        Схема с использованием трех ваттметров

        Схема с использованием трех ваттметров

        Если нейтральный провод является недоступным, тогда следует создать искусственную нейтральную точку. В этом случае катушки напряжения ваттметров подключаются симметричной звездой вместе с добавочным резистором.

        Схема с добавочным резистором

        Схема с добавочным резистором

        Реактивную мощность находят с помощью выражений:

        Формулы реактивной мощности

        Формулы реактивной мощности

        Рассмотренные выше схемы для измерения реактивной мощности используются преимущественно в лабораторной практике. Их сейчас заменяют двух- и трехфазными ваттметрами и счетчиками, в корпусе которых установлено 2 или 3 однофазных измерительных механизма. Существуют и цифровые приборы, выполняющие измерительные функции с помощью блоков-модулей.

        Схема цифрового измерительного прибора

        Схема цифрового измерительного прибора

        Применение современных электронных приборов позволяет получать более точные данные, касающиеся величины энергии в сети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *