Условное обозначение диодов, варикапов, светодиодов на схемах
Диоды — простейшие полупроводниковые приборы, основой которых является электронно-дырочный переход (p-n-переход). Как известно, основное свойство p-n-перехода — односторонняя проводимость: от области p (анод) к области n (катод). Это наглядно передает и условное графическое обозначение полупроводникового диода : треугольник (символ анода) вместе с пересекающей его линией электрической связи образуют подобие стрелки, указывающей направление проводимости. Перпендикулярная этой стрелке черточка символизирует катод (рис. 1).
Рис.1. Условное обозначение диодов
Буквенный код диодов — VD. Этим кодом обозначают не только отдельные диоды, но и целые группы, например, выпрямительные столбы (см. рис. 1, VD4). Исключение составляет однофазный выпрямительный мост, изображаемый в виде квадрата с соответствующим числом выводов и символом диода внутри (рис. 2, VD1). Полярность выпрямленного моста напряжения на схемах не указывают, так как ее однозначно определяет символ диода. Однофазные мосты, конструктивно объединенные в одном корпусе, изображают отдельно, показывая принадлежность к одному изделию в позиционном обозначении (см. рис. 2, VD2.1, VD2.2). Рядом с позиционным обозначением диода можно указывать и его тип.
Рис.2. Условное обозначение диодных мостов
На основе базового символа построены и условные графические обозначения полупроводниковых диодов с особыми свойствами. Чтобы показать на схеме стабилитрон, катод дополняют коротким штрихом, направленным в сторону символа анода (рис. 3, VD1). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения обозначения стабилитрона на схеме (VD2—VD4). Это относится и к символу двуханодного (двустороннего) стабилитрона (VD5).
Рис.3. Условное обозначение стабилитронов, варикапов, диодов Шотки
Аналогично построены условные графические обозначения туннельных диодов, обращенных и диодов Шотки — полупроводниковых приборов, используемых для обработки сигналов в области СВЧ. В символе туннельного диода (см. рис. 3, VD8) катод дополнен двумя штрихами, направленными в одну сторону (к аноду), в обозначении диода Шотки (VD10) — в разные стороны; в обозначении обращенного диода (VD9) — оба штриха касаются катода своей серединой.
Свойство обратно смещенного p-n-перехода вести себя как электрическая ёмкость использовано в специальных диодах — варикапах (от слов vari(able) — переменный и cap(acitor) — конденсатор). Условное графическое обозначение этих приборов наглядно отражает их назначение (рис. 3, VD6): две параллельные линии воспринимаются как символ конденсатора. Как и конденсаторы переменной ёмкости, для удобства варикапы часто изготовляют в виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 3 показано обозначение матрицы из двух варикапов (VD1).
Базовый символ диода использован и в обозначении тиристоров (от греческого thyra — дверь и английского resistor — резистор) — полупроводниковых приборов с тремя p-n-переходами (структура р-n-p-n), используемых в качестве переключающих диодов. Буквенный код этих приборов — VS.
Тиристоры с выводами только от крайних слоев структуры называют динисторами и обозначают символом диода, перечеркнутым отрезком линии, параллельным катоду (рис. 4, VS1). Такой же прием использован и при построении обозначения симметричного динистора (VS2), проводящего ток (после его включения) в обоих направлениях. Тиристоры с дополнительным, третьим выводом (от одного из внутренних слоев структуры) называют тринисторами. Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (VS3), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (VS4). Условное графическое обозначение симметричного (двунаправленного) тринистора получают из символа симметричного динистора добавлением третьего вывода (см. рис.4, VS5).
Рис.4. Условное обозначение динисторов, тринисторов
Из диодов, изменяющих свои параметры под действием внешних факторов, наиболее широко применяют фотодиоды. Чтобы показать такой полупроводниковый прибор на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева вверху, независимо от положения) помещают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 5, VD1—VD3). Подобным образом строятся обозначения любого другого полупроводникового диода, управляемого оптическим излучением. На рис. 5 в качестве примера показано условное графическое обозначение фотодинистора VD4.
Рис.5. Условное обозначение фотодиодов
Аналогично строятся условные графические обозначения светоизлучающих диодов, но стрелки, обозначающие оптическое излучение, помещают справа вверху, независимо от положения и направляют в противоположную сторону (рис. 6). Поскольку светодиоды, излучающие видимый свет, применяют обычно в качестве индикаторов, на схемах их обозначают латинскими буквами HL. Стандартный буквенный код D используют только для инфракрасных (ИК) светодиодов.
Рис.6. Условное обозначение светодиодов и светодиодных индикаторов
Для отображения цифр, букв и других знаков часто применяют светодиодные знаковые индикаторы. Условные графические обозначения подобных устройств в ГОСТе формально не предусмотрены, но на практике широко используются символы, подобные HL3, показанному на рис. 6, где изображено обозначение семисегментного индикатора для отображения цифр и запятой. Сегменты подобных индикаторов обозначаются строчными буквами латинского алфавита но часовой стрелке, начиная с верхнего. Этот символ наглядно отражает практически реальное расположение светоизлучающих элементов (сегментов) в индикаторе, хотя и не лишен недостатка; он не несет информации о полярности включения в электрическую цепь (поскольку подобные индикаторы выпускают как с общим анодом, так и с общим катодом, то схемы включения будут различаться). Однако особых затруднений это не вызывает, поскольку подключение общего вывода индикаторов обычно указывают на схеме. Буквенный код знаковых индикаторов — HG.
Светоизлучающие кристаллы широко используют в оптронах — специальных приборах, применяемых для связи отдельных частей электронных устройств в тех случаях, если необходима их гальваническая развязка. На схемах оптроны обозначают буквой U и изображают, как показано на рис. 7.
Рис.7. Условное обозначение оптронов
Оптическую связь излучателя (светодиода) и фотоприемника показывают в этом случае двумя стрелками, перпендикулярными к линиям электрической связи — выводам оптрона. Фотоприемником в оптроне могут быть фотодиод (см. рис. 7, U1), фототиристор U2, фоторезистор U3 и т. д. Взаимная ориентация символов излучателя и фотоприемника не регламентируется. При необходимости составные части оптрона можно изображать раздельно, но в этом случае знак оптической связи следует заменять знаками оптического излучения и фотоэффекта, а принадлежность частей к одному изделию показывать в позиционном обозначении (см. рис. 7, U4.1,U4.2).
Для чего в этой схеме диоды VD1 и VD2
VD1 для смеха (когда он откроется, транзистор уже давно расплавится), а VD2 для защиты базы от отрицательных напряжений.
VD1 не нужен, VD2 ограничивает напряжение на базе на уровне около 1В, возможно для обеспечения максимально линейного режима работы каскада.
Защита базы от статики.
Защита от аномально больших входных напряжений VD2 защищает
от -750 мв И VD1 питание точки R4 R2 +750 мв положительного перенапряжения
Зачем нужен диод VD1 на реле от активатора багажника Старлайн А93
Для чего на сигнализации Старлайн а93 , а конкретнее на активаторе багажника на реле ставят диод vd1 . Разъясните не опытному для чего он нужен ? И так все стабильно работает от черно — жёлтого провода через реле . И какой все таки лучше поставить предохранитель(сколько ампер ) на питание реле от +12 v . Заранее всем спасибо .
Голос 0 0 Отмена Подписаться
Для чего на сигнализации Старлайн а93 , а конкретнее на активаторе багажника на реле ставят диод vd1 . Разъясните не опытному для чего он нужен ?
Зачем диоды прямо на катушке реле — красочно описано ЗДЕСЬ. Если этого мало — надо почитать в интернете про «ЭДС самоиндукции и методы борьбы с ним» и «Источники ВЧ-помех».
И какой все таки лучше поставить предохранитель(сколько ампер ) на питание реле от +12 v .
Такой, чтобы от нормальной работы реле (или другой схемы, которая питается через него) он не сгорал, а в случае КЗ или перегрузки в цепи — сгорал. Для этого надо измерить (или вычислить по законам электротехники) номинальный ток, зная параметры нагрузки (с учетом колебаний температуры и зависимости сопротивления нагорузки от неё) и величину питающего напряжения, с учетом изменений этого напряжения при работе генератора и без него (при питании только от аккумулятора).
И это. Мне кажется, что через Ваш предохранитель потечет ток не только катушки реле (50. 150мА обычно или в амперах 0,05. 0,15А), но и ток моторчика замка багажника (3. 10А обычно и зависит от типа моторчика и тугости механизма замка, который ему надо отпереть). Вспоминаем закон ома и законы Кирхгофа, рисуем схему, рисуем пути протекания тока, умножаем, складываем, делим. Ну или включаем в цепь вместо предохранителя АМПЕРМЕТР и узнаем — какой ток течет в цепи. Предохранитель ставим с полуторакратным-двукратным запасом от измеренного значения.
В а93 уже каналы уже защищены встроенными диодами в микросхеме управления
Что такое диод и как его проверить
Мы настолько привыкли к компьютерам, что не представляем своей жизни без них. Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.
А собранные вместе, они являют собой нечто совершенно уникальное!
Какой кирпич не возьми – это только кусок обожженной глины; не сразу и понятно, к какому делу его – самого по себе — можно приспособить.
Это как дом, построенный из кирпичей.
Но несколько тысяч собранных определенным образом таких кусков глины — это жилище, которое защищает от непогоды и предоставляет крышу над головой.
Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.
Но если вы хотите научиться «лечить» ваши компьютеры, то придется разбираться, как устроены их составные части.
Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно. Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.
Что такое диод?
Диоды применяются в компьютерных блоках питания для выпрямления переменного тока.
Выпрямительный диод – это деталь, имеющая в своем составе соединенные вместе полупроводники двух типов – p-типа (positive – положительный) и n–типа (negative – отрицательный).
При их соединении (сплавлении) образуется так называемый p-n переход. Этот переход обладает разным сопротивлением при различной полярности приложенного напряжения.
Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику — аноду, а отрицательная – к n-полупроводнику — катоду), то сопротивление диода невелико.
В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).
Когда диод открыт, то на нем падает какое-то напряжение.
Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.
Причем зависимость эта нелинейная.
Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.
Эта характеристика обязательно приводится в полном техническом описании (data sheets, справочных листах).
Например, на распространенном диоде 1N5408, применяемом в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.
Мостовая схема выпрямления
В компьютерном блоке питания при выпрямлении сетевого напряжения применяется обычно мостовая схема выпрямления – 4 диода, включенные определенным образом.
Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.
Если клемма 1 имеет отрицательный клеммы 2 потенциал, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении – от клеммы 3 к клемме 4.
В этом и заключается эффект выпрямления. Если бы не было диодного моста – ток по нагрузке протекал бы в разных направлениях. С мостом же он протекает в одном. Такой ток называется пульсирующим.
В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и сумму гармоник (частот, кратных основной частоте переменного напряжения 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.
Схема выпрямления из двух диодов
Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух.
Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?»
Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.
В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В.
А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.
К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной.
Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.
Если потенциал верхнего конца вторичной обмотки трансформатора (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.
Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.
Теперь давайте покончим со скучной теорией и перейдем к самому интересному – к практике.
Проверка диодов
Для начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как работать с цифровым тестером.
Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.
Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.
Палочка – это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) – анод.
Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).
Если присоединить красный щуп тестера к аноду, а черный — к катоду отдельного диода, то диод будет открыт напряжением с тестера.
Дисплей покажет величину 0,5 – 0,6 В.
Если изменить полярность щупов, диод будет заперт.
Дисплей при этом покажет единицу в крайнем левом разряде.
Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (~ переменное напряжение, +, — постоянное напряжение).
Диодный мост можно проверить, установив один щуп на одну из клемм «~», а второй – поочередно на выводы «+» и «-».
При этом один диод будет открыт, а другой закрыт.
Если поменять полярность щупов – то тот диод, который был закрыт, теперь откроется, а другой закроется.
Следует обратить внимание на то, что катод – это плюсовой вывод моста.
Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).
Такой мост, естественно, непригоден для работы.
В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.
При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.
Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.
Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.
Токи потребления могут достигать 20 А и более, и на диодах будет рассеиваться большая мощность.
Вследствие этого они будут сильно греться.
Мощность рассеяния уменьшится, если будет меньшим прямое напряжение на диоде.
Поэтому в таких случаях применяют так называемые диоды Шоттки, у которых прямое падение напряжения меньше.
Диоды Шоттки
Диод Шоттки состоит не из двух различных полупроводников, а из металла и полупроводника.
Получающийся при этом так называемый потенциальный барьер будет меньше.
В компьютерных блоках питания применяют сдвоенные диоды Шоттки в трехвыводном корпусе.
Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если проверить ее тестером (в режиме проверки диодов), то он покажет величину около 0,17 В.
Меньшая величина напряжения обусловлена тем, что через диод протекает очень небольшой ток, далекий от максимального.
В заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт – к нему приложено обратное напряжение. При замене диодов надо учитывать эту величину.
Если в реальной схеме обратное напряжение превысит предельно допустимое – диод выйдет из строя!
Диод – важная «железка» в электронике. Чем бы еще мы выпрямляли напряжение?