Типы сетей (заземления)
Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей (занулением) до последнего времени были широко распространены в России.
Электробезопасность в сети TN-C при косвенном прикосновении2 обеспечивается отключением возникших однофазных замыканий на корпус с помощью предохранителей или автоматических выключателей. Режим TN-C был принят в качестве главенствующего в то время, когда основными аппаратами защиты от замыканий на корпус были предохранители и автоматические выключатели. Характеристики срабатывания этих аппаратов защиты в свое время определялись особенностями защищаемых воздушных линий (ВЛ) и кабельных линий (КЛ), электродвигателей и других нагрузок. Обеспечение электробезопасности было второстепенной задачей.
При относительно низких значениях токов однофазного КЗ (удаленность нагрузки от источника, малое сечение провода) время отключения существенно возрастает. При этом электропоражение человека, прикоснувшегося к металлическому корпусу, весьма вероятно. Например, для обеспечения электробезопасности отключение КЗ на корпус в сети 220 В должно выполняться за время не более 0,2 с [2]. Но такое время отключения предохранители и автоматические выключатели способны обеспечить только при кратностях токов КЗ по отношению к номинальному току на уровне 6-10. Таким образом, в сети TN-C существует проблема обеспечения безопасности при косвенном прикосновении из-за невозможности обеспечения быстрого отключения. Кроме того, в сети TN-C при однофазном КЗ на корпус электроприемника возникает вынос потенциала по нулевому проводу на корпуса неповрежденного оборудования, в том числе отключенного и выведенного в ремонт. Это увеличивает вероятность поражения людей, контактирующих с электрооборудованием сети. Вынос потенциала на все зануленные корпуса возникает и при однофазном КЗ на питающей линии (например, обрыв фазного провода ВЛ 0,4 кВ с падением на землю) через малое сопротивление (по сравнению с сопротивлением контура заземления подстанции 6-10/0,4 кВ). При этом на время действия защиты на нулевом проводе и присоединенных к нему корпусах возникает напряжение, близкое к фазному. Особую опасность в сети TN-C представляет обрыв (отгорание) нулевого провода. В этом случае все присоединенные за точкой обрыва металлические зануленные корпуса электроприемников окажутся под фазным напряжением.
Самым большим недостатком сетей TN-C является неработоспособность в них устройств защитного отключения (УЗО) или residual current devices (RCD) по западной классификации.
Пожаробезопасность сетей TN-C низкая. При однофазных КЗ в этих сетях возникают значительные токи (килоамперы), которые могут вызывать возгорание. Ситуация осложняется возможностью возникновения однофазных замыканий через значительное переходное сопротивление, когда ток замыкания относительно невелик и защиты не срабатывают либо срабатывают со значительной выдержкой времени.
Бесперебойность электроснабжения3 в сетях TN-C при однофазных замыканиях не обеспечивается, так как замыкания сопровождаются значительным током и требуется отключение присоединения.
В процессе однофазного КЗ в сетях TN-C возникает повышение напряжения (перенапряжения) на неповрежденных фазах примерно на 40%. Сети TN-C характеризуются наличием электромагнитных возмущений. Это связано с тем, что даже при нормальных условиях работы на нулевом проводнике при протекании рабочего тока возникает падение напряжения. Соответственно между разными точками нулевого провода имеется разность потенциалов. Это вызывает протекание токов в проводящих частях зданий, оболочках кабелей и экранах телекоммуникационных кабелей и соответственно электромагнитные помехи. Электромагнитные возмущения существенно усиливаются при возникновении однофазных КЗ со значительным током, протекающим в нулевом проводе.
Значительный ток однофазных КЗ в сетях TN-C вызывает существенные разрушения электрооборудования. Например, прожигание и выплавление стали статоров электродвигателей. На стадии проектирования и настройки защит в сети TN-C необходимо знать сопротивления всех элементов сети, в том числе и сопротивления нулевой последовательности для точного расчета токов однофазных КЗ. То есть необходимы расчеты или измерения сопротивления петли фаза-нуль для всех присоединений. Любое существенное изменение в сети (например, увеличение длины присоединения) требует проверки условий защиты.
СЕТЬ TN-S
Сети 0,4 кВ с таким режимом заземления нейтрали и открытых проводящих частей называются пятипроводными. В них нулевой рабочий и нулевой защитный проводники разделены. Само по себе использование сети TN-S не обеспечивает электробезопасность при косвенном прикосновении, так как при пробое изоляции на корпусе, как и в сети TN-C, возникает опасный потенциал. Однако в сетях TN-S возможно использование УЗО. При наличии этих устройств уровень электробезопасности в сети TN-S существенно выше, чем в сети TN-С. При пробое изоляции в сети TN-S также возникает вынос потенциала на корпуса других электроприемников, связанных проводником PE. Однако быстрое действие УЗО в этом случае обеспечивает безопасность. В отличие от сетей TN-С обрыв нулевого рабочего проводника в сети TN-S не влечет за собой появление фазного напряжения на корпусах всех связанных данной линией питания электроприемников за точкой разрыва.
Пожаробезопасность сетей TN-S при применении УЗО в сравнении с сетями TN-С существенно выше. УЗО чувствительны к развивающимся дефектам изоляции и предотвращают возникновение значительных токов однофазных КЗ.
В отношении бесперебойности электроснабжения и возникновения перенапряжений, сети TN-S не отличаются от сетей TN-С.
Электромагнитная обстановка в сетях TN-S в нормальном режиме существенно лучше, чем в сетях TN-С. Это связано с тем, что нулевой рабочий проводник изолирован и отсутствует ответвление токов в сторонние проводящие пути. При возникновении однофазного КЗ создаются такие же электромагнитные возмущения, как и в сетях TN-С.
Наличие в сетях TN-S устройств УЗО существенно снижает объем повреждений при возникновении однофазных КЗ по сравнению с сетями TN-С. Это объясняется тем, что УЗО ликвидирует повреждение в его начальной стадии.
В отношении проектирования, настройки защит и обслуживания, сети TN-S не имеют каких-либо преимуществ по сравнению с сетями TN-С. Отмечу, что сети TN-S более дорогие в сравнении с сетями TN-С из-за наличия пятого провода, а также УЗО.
СЕТЬ TN-С-S
Это комбинация рассмотренных выше двух типов сетей. Для этой сети будут справедливы все преимущества и недостатки, указанные выше.
СЕТЬ TТ
Особенностью данного типа сетей 0,4 кВ является то, что открытые проводящие части электроприемников присоединены к заземлению, которое обычно независимо от заземления питающей подстанции 6 1310/0,4 кВ.
Электробезопасность в этих сетях обеспечивается использованием УЗО в обязательном порядке. Само по себе использование режима ТТ не обеспечивает безопасности при косвенном прикосновении. Если сопротивление местного заземлителя, к которому присоединены открытые проводящие части, равно сопротивлению заземления питающей подстанции 6(10)/0,4 кВ и возникает замыкание на корпус, то напряжение прикосновения составит половину фазного напряжения (110 В для сети 220 В). Такое напряжение опасно, и необходимо немедленное отключение поврежденного присоединения. Но отключение не может быть обеспечено автоматическими выключателями и предохранителями за безопасное для прикоснувшегося человека время из-за малой величины тока однофазного замыкания. Например, если принять, что сопротивления заземления питающей подстанции 6(10)/0,4 кВ и местного заземлителя равны 0,5 Ома, и пренебречь сопротивлениями силового трансформатора и кабеля, при фазном напряжении 220 В ток однофазного замыкания на корпус в сети ТТ составит всего 220 А. С учетом всех сопротивлений в цепи замыкания ток будет еще меньше.
Пожаробезопасность сетей TТ в сравнении с сетями TN-С существенно выше. Это связано со сравнительно малой величиной тока однофазного замыкания и с применением УЗО, без которых сети ТТ вообще эксплуатироваться не могут.
Бесперебойность электроснабжения3 в сетях TТ при однофазных замыканиях не обеспечивается, так как требуется отключение присоединения по условиям безопасности.
При возникновении однофазного замыкания на землю в сети ТТ напряжение на неповрежденных фазах относительно земли повышается, что связано с появлением напряжения на нейтрали питающего трансформатора 6(10)/0,4 кВ. Если принять сопротивления, указанные выше, то напряжение на нейтрали составит половину фазного. Такое повышение напряжения не опасно для изоляции, так как однофазное замыкание достаточно быстро ликвидируется действием УЗО, причем в большинстве случаев до своего полного развития и достижения током максимума.
В системе ТТ нескольких корпусов электроприемников обычно объединены одним защитным проводником РЕ и присоединены к общему заземлителю, отдельному, как уже сказано, от заземлителя питающей подстанции. Выполнять отдельный заземлитель в сети ТТ для каждого электроприемника нецелесообразно по экономическим соображениям. В нормальном режиме по защитному проводнику в системе ТТ не протекает ток и соответственно между корпусами отдельных электроприемников нет разности потенциалов. То есть в нормальном режиме электромагнитные возмущения (разность потенциалов между корпусами, протекание токов по конструкциям зданий и оболочкам кабелей) отсутствуют. При возникновении однофазного замыкания ток относительно невелик, при его протекании падение напряжения на защитном проводнике невелико, длительность протекания тока мала. Соответственно возникающие при этом возмущения также невелики. Таким образом, с позиций электромагнитных возмущений сеть ТТ имеет преимущество по сравнению с сетями TN-С в нормальном режиме работы и с сетями TN-С, TN-S, TN-С-S в режиме однофазного замыкания.
Объем повреждений оборудования в сетях ТТ при возникновении однофазных КЗ невелик, что связано с малой величиной тока в сравнении с сетями TN-С, TN-S, TN-С-S и с использованием УЗО, которые обеспечивают отключение до полного развития повреждения изоляции.
С точки зрения проектирования, сети ТТ имеют существенное преимущество по сравнению с сетями TN. Использование в сетях ТТ УЗО устраняет проблемы, связанные с ограничением длины линий, необходимостью знать полное сопротивление петли КЗ. Сеть может быть расширена или изменена без повторного расчета токов КЗ или замера сопротивления петли тока КЗ. Учитывая, что сам по себе ток однофазного КЗ в сетях ТТ меньше, чем в сетях TN-S, TN-С-S, сечение защитного проводника РЕ в сети ТТ может быть меньше.
СЕТЬ IT
Нейтральная точка питающего трансформатора 6(10)/0,4 кВ такой сети изолирована от земли или заземлена через значительное сопротивление (сотни Ом 13 несколько кОм). Защитный проводник в таких сетях отделен от нейтрального.
Электробезопасность при однофазном замыкании на корпус в этих сетях наиболее высокая из всех рассмотренных. Это связано с малой величиной тока однофазного замыкания (единицы ампер). При таком токе замыкания напряжение прикосновения крайне невелико и отсутствует необходимость немедленного отключения возникшего повреждения. Кроме того, в сети IT безопасность может быть улучшена за счет применения УЗО.
Пожаробезопасность сетей IT самая высокая в сравнении с сетями TN-С, TN-S, TN-С-S, ТТ. Это объясняется наименьшей величиной тока однофазного замыкания (единицы ампер) и малой вероятностью возгорания.
Сети IT отличаются высокой бесперебойностью электроснабжения потребителей. Возникновение однофазного замыкания не требует немедленного отключения.
При возникновении однофазного замыкания на землю в сети IT напряжение на неповрежденных фазах увеличивается в 1,73 раза. В сети IT с изолированной нейтралью (без резистивного заземления) возможно возникновение дуговых перенапряжений высокой кратности.
Электромагнитные возмущения в сетях IT невелики, поскольку ток однофазного замыкания мал и не создает значительных падений напряжения на защитном проводнике.
Повреждения оборудования при возникновении однофазного замыкания в сетях IT очень малы. Для эксплуатации сети IT необходим квалифицированный персонал, способный быстро находить и устранять возникшее замыкание. Для определения поврежденного присоединения необходимо специальное устройство (в западных странах применяется генератор тока с частотой, отличной от промышленной, включаемый в нейтраль). Сети IT имеют ограничение на расширение сети, так как новые присоединения увеличивают ток однофазного замыкания.
Заключение
В качестве общих рекомендаций для выбора той или иной сети можно указать следующее: 1. Сети ТN-C и ТN-C-S не следует использовать из-за низкого уровня электро- и пожаробезопасности, а также возможности значительных электромагнитных возмущений.
2. Сети TN-S рекомендуются для статичных (не подверженных изменениям) установок, когда сеть проектируется «раз и навсегда».
3. Сети ТТ следует использовать для временных, расширяемых и изменяемых электроустановок. 4. Сети IT следует использовать в тех случаях, когда бесперебойность электроснабжения является крайне необходимой.
Возможны варианты, когда в одной и той же сети следует использовать два или три режима. Например, когда вся сеть получает питание по сети TN-S, а часть ее через разделительный трансформатор по сети IT.
Отметим, что ни один из способов заземления нейтрали и открытых проводящих частей не является универсальным. В каждом конкретном случае необходимо проводить экономическое сравнение и исходить из критериев: электробезопасности, пожаробезопасности, уровня бесперебойности электроснабжения, технологии производства, электромагнитной совместимости, наличия квалифицированного персонала, возможности последующего расширения и изменения сети.
Поставка, сервис, проектирование ИБП, ДГУ, Динамических ИБП. Тел. / факс : +7(800) 500-34-32 (многоканальный) e-mail: sales@entel.ru
Поставка оборудования коммутации, контроля и защиты до 5000 Ампер. Тел. / факс : +7(499) 922-10-12 (многоканальный) e-mail: socomec@entel.ru
Виды электрических сетей
Электрические сети предназначение для передачи электроэнергии от источников питания к потребителям и для связи электростанций и объединений энергосистем. В состав электросети входят как электрические линии, так и трансформаторные и распределительные подстанции.
Электрические сети подразделяют по ряду признаков:
- по роду тока,
- по напряжению,
- по конфигурации,
- по назначению,
- по району обслуживания.
По роду тока различают электросети постоянного и переменного тока. Производство, передача и распределение электроэнергии у нас в стране осуществляется при помощи трехфазного переменного тока с частотой 50 гц. Большая часть потребителей работает на переменном токе. Поэтому основным видом электросетей являются сети трехфазного переменного тока.
Постоянный ток, а следовательно, и сети постоянного тока, применяют только в установках специального назначения. Постоянный ток очень высокого напряжения применяется для передачи значительных мощностей на большие расстояния. Например, в статье «Линии передачи постоянного тока» описана ВЛ на напряжение 1500 кВ с пропускной мощностью до 6000 МВт.
По напряжению электросети, как и все электроустановки, разделяют на сети напряжением до 1000 В и сети с напряжением выше 1000 В или условно на электросети низкого и высокого напряжения.
По конфигурации электросети подразделяют на разомкнутые (радиальные) и замкнутые. Разомкнутой называю сеть, в которой потребители электроэнергии получают питание только с одной стороны.
Замкнутой называют сеть, в которой потребители электроэнергии могут получать питание не менее чем с двух сторон.
По назначению электросети подразделяются на питающие и распределительные. Распределительные электросети служат для непосредственного питания электроприемников: электродвигателей, трансформаторов и т.п.
Питающие электросети служат для передачи электроэнергии на распределительные подстанции (РП), от которых питаются распределительные сети. В некоторых сетях трудно бывает четко определить сеть на питающую и распределительную.
По району обслуживания различают местные и районные электросети. Местными электросетями обычно называют сети напряжением до 35 кВ включительно, питающие потребителей электроэнергии в радиусе не более 15-30 км при передаваемой мощности на одноцепной линии до 10 — 15 МВА (промышленные, городские, сельские сети).
Районными электросетями являются сети напряжением 35 — 110 кВ и выше, состоящие из линий электропередачи, связывающих на параллельную работу отдельные электростанции и питающих районные подстанции.
В первые годы развития электроснабжения в больших районах строились линии высокого напряжения (110 и 220 кВ) для транзитной передачи электрической энергии от районных станций до крупных потребителей. Такие передачи состояли из повысительных и понизительных трансформаторов и воздушных или кабельных линий, соединяющих их.
Эти сооружения назывались электропередачами. В настоящее время они работают большей частью не обособленно, а связаны между собой и образуют сети высокого напряжения. Отдельные же электропередачи строятся только на более высокие напряжения.
Пример схемы электрической системы:
От мощной гидроэлектростанции электроэнергия передается через повысительную подстанцию и линию электропередачи 220 кВ длиной до 300 км и понизительную подстанцию в районную сеть 110 кВ. Эта сеть питается также через линию электропередачи 110 кВ длиной до 150 км и повысительную подстанцию от районной тепловой электростанции конденсационного типа.
Внутри кольцевой районной сети 110 кВ имеются понизительные подстанции, обслуживающие большой промышленный район, в центре которого находится ТЭЦ, работающая на привозном топливе и снабжающая электрической и тепловой энергией потребителей промышленного района, расположенных вблизи станции.
Для связи с кольцевой районной сетью 110 кВ, а именно для отдачи и получения электроэнергии при различных режимах работы ТЭЦ, последняя имеет подстанцию 110 кв. От районной сети 110 кВ через понизительную подстанцию электропередачи 35 кВ и понизительные подстанции 35/6 кВ питаются местные сети 6 кВ.
В нижней части схемы показана присоединенная к системе местная электростанция сравнительно небольшой мощности с распределяющей сетью 6 кВ, непосредственно отходящей от шин станции (вправо), и питающей сетью 6 кВ (влево). Понизительные трансформаторы сети 6 кВ питают распределительные сети 380/220 В.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Типы электрических розеток и напряжение в разных странах мира
При поездках за рубеж важное значение имеет формат розетки и напряжение в сети, ведь каждому из нас потребуется заряжать свой мобильный телефон,ноутбук или планшет. Большинство блоков питания для электронных устройств, таких как ноутбуки, зарядные устройства, мобильные устройства, видеокамеры и фотоаппараты имеют универсальное питание, поэтому они способны работать при напряжении питания от 100 до 240 Вольт, и частоте 50 или 60 Гц.
В мире существуют два стандарта напряжения: европейский — 220-240В и американский 100-127В. И два стандарта частоты переменного тока: 50 Гц и 60 Гц . США, Япония и большинство стран Южной Америки используют связку 100-127В 60 Гц. Остальной мир в основном использует европейские 220-240В 50 Гц. Кроме того, в мире есть несколько стран с разными вариациями напряжения и частоты, например Филиппины, там используется напряжение 220-240В с частотой 60 Гц.
Карта-схема использования в разных странах мира напряжения и частоты тока
Стандарты электрических розеток развивались в большинстве стран независимо друг от друга, поэтому в большинстве своем вилки и розетки разных стран не совместимы между собой.
Карта-схема использования в разных странах мира электрических вилок и розеток по типам
Сводная таблица типов розеток, напряжения и частоты тока по странам
Страны и территории | Тип розетки | Напряжение В |
Частота, Гц |
Дополнительно |
---|---|---|---|---|
Австралия | I | 230 | 50 | |
Австрия | C, F | 230 | 50 | |
Азербайджан | C | 220 | 50 | |
Азорские о-ва | C, F | 220 | 50 | |
Албания | C, F | 220 | 50 | |
Алжир | C, F | 230 | 50 | |
Американское Самоа | A, B, F, I | 120 | 60 | |
Ангилья | A, B | 110 | 60 | |
Ангола | C | 220 | 50 | |
Андорра | C, F | 230 | 50 | |
Антигуа | A, B | 230 | 60 | в аэропорту 110 В |
Аомынь (Макао) | D, M, G, редко F | 220 | 50 | |
Аргентина | C, I | 220 | 50 | |
Армения | C, F | 220 | 50 | |
Аруба | A, B, F | 127 | 60 | в Лаго 115 В |
Афганистан | C, D, F | 240 | 50 | напряжение неустойчиво |
Багамские о-ва | A, B | 120 | 60 | в некоторых отдаленных регионах 50Гц |
Балеарские о-ва | C, F | 220 | 50 | |
Бангладеш | A, C, D, G, K | 220 | 50 | |
Барбадос | A, B | 115 | 50 | |
Бахрейн | G | 230 | 50 | в Авали 110 В, 60Гц |
Белоруссия | C | 220 | 50 | |
Белиз | A, B, G | 110, 220 | 60 | |
Бельгия | C, E | 230 | 50 | |
Бенин | C, E | 220 | 50 | |
Бермудские о-ва | A, B | 120 | 60 | |
Болгария | C, F | 230 | 50 | |
Боливия | A, C | 220 | 50 | в Ла-Пасе 115 В |
Босния | C, F | 220 | 50 | |
Ботсвана | D, G, M | 231 | 50 | |
Бразилия | A, B, C, I | 127, 220 | 60 | |
Бруней | G | 240 | 50 | |
Буркина-Фасо | C, E | 220 | 50 | |
Бурунди | C, E | 220 | 50 | |
Бутан | D, F, G, M | 230 | 50 | |
Вануату | I | 230 | 50 | |
Великобритания(Англия, Британия, Объединенное Королевство) | G, редко D и M | 230 | 50 | ранее 240 В; иногда дополнительно низковольтная (110-115 В) розетка в ванной, похожая на тип C |
Венесуэла | A, B | 120 | 60 | также возможно 220 в с типом G для питания кондиционеров и т. п. |
Венгрия | C, F | 230 | 50 | ранее 220 В |
Восточный Тимор | C, E, F, I | 220 | 50 | |
Вьетнам | A, C | 220 | 50 | тип A — в Южном Вьетнаме, тип C — в Северном. В дорогих отелях также применяется тип G |
Габон | C | 220 | 50 | |
Гаити | A, B | 110 | 60 | |
Гайана | A, B, D, G | 240 | 60 | |
Гамбия | G | 230 | 50 | |
Гана | D, G | 230 | 50 | |
Германия | C, F | 230 | 50 | ранее 220 В; тип C давно не устанавливается |
Гваделупа | C, D, E | 230 | 50 | |
Гватемала | A, B | 120 | 60 | |
Гвинея | C, F, K | 220 | 50 | |
Гвинея-Бисау | C | 220 | 50 | |
Гибралтар | G, K | 240 | 50 | тип K только в Европорте |
Гондурас | A, B | 110 | 60 | |
Гонконг | G, M, D | 220 | 50 | |
Гренада | G | 230 | 50 | |
Гренландия | C, K | 220 | 50 | |
Греция | C, F | 230 | 50 | ранее 220 В |
Гуам | A, B | 110 | 60 | |
Дания | C, K, E | 230 | 50 | тип E добавляется с июля 2008 г. |
Джибути | C, E | 220 | 50 | |
Доминика | D, G | 230 | 50 | |
Доминиканская Республика | A, B | 110 | 60 | |
Египет | C | 220 | 50 | |
Замбия | C, D, G | 230 | 50 | |
Западный Самоа | I | 230 | 50 | |
Зимбабве | D, G | 220 | 50 | |
Израиль | C, H, M | 230 | 50 | в типе H плоские штырьки сменены круглыми; большинство новых розеток принимает вилки как H, так и C |
Индия | C, D, M | 230 | 50 | |
Индонезия | C, F, реже G | 127, 230 | 50 | |
Иордания | B, C, D, F, G, J | 230 | 50 | |
Ирак | C, D, G | 230 | 50 | |
Иран | F, реже C | 220 | 50 | |
Ирландия | D, F, G, M | 230 | 50 | ранее 220 В; иногда дополнительно 110 В |
Исландия | C, F | 230 | 50 | |
Испания | C, F | 230 | 50 | ранее 220 В |
Италия | C, F, L | 230 | 50 | ранее 220 В |
Йемен | A, D, G | 230 | 50 | |
Кабо-Верде (о-ва Зеленого Мыса) | C, F | 220 | 50 | |
Казахстан | C, F | 220 | 50 | |
Каймановы о-ва | A, B | 120 | 60 | |
Камбоджа | A, C, G | 230 | 50 | |
Камерун | C, E | 220 | 50 | |
Канада | A, B | 120 | 60 | иногда дополнительно 240 В |
Канарские о-ва | C, E, F, L | 220 | 50 | |
Катар | D, G | 240 | 50 | |
Кения | G | 240 | 50 | |
Кипр | G | 240 | 50 | |
Киргизия | C | 220 | 50 | |
Кирибати | I | 240 | 50 | |
Китай (материковый) | A, C, I | 220 | 50 | |
КНДР | C | 220 | 50 | |
Колумбия | A, B | 120 | 60 | иногда дополнительно 240 В |
Коморские о-ва | C, E | 220 | 50 | |
Демократическая Республика Конго (Киншаса) | C, D | 220 | 50 | |
Республика Конго (Браззавиль) | C, E | 230 | 50 | |
Корея (Южная) | A, B, C, F | 220,110 | 60 | типы A и B используются при напряжении 110 В (пережиток японской колонии) в старых сооружениях |
Коста-Рика | A, B | 120 | 60 | |
Кот-д’Ивуар (Берег Слоновой Кости) | C, E | 230 | 50 | |
Куба | A, B | 110 | 60 | |
Кувейт | C, G | 240 | 50 | |
Лаос | A, B, C, E, F | 230 | 50 | |
Латвия | C, F | 220 | 50 | |
Лесото | M | 220 | 50 | |
Либерия | A, B, C, E, F | 120, 240 | 50 | раньше 60 Гц, в частных электрических сетях возможно сохранение частоты 60 Гц, типы A и B используются при напряжении 110-120 В |
Ливан | A, B, C, D, G | 110, 200 | 50 | |
Ливия | D, L | 127 | 50 | в отдельных городах 230 В |
Литва | C, F | 230 | 50 | ранее 220 В |
Лихтенштейн | C, J | 230 | 50 | |
Люксембург | C, F | 230 | 50 | ранее 220 В |
Маврикий | C, G | 230 | 50 | |
Мавритания | C | 220 | 50 | |
Мадагаскар | C, D, E, J, K | 127, 220 | 50 | |
Мадейра | C, F | 220 | 50 | |
Македония | C, F | 220 | 50 | |
Малави | G | 230 | 50 | |
Малайзия | G, редко M, C | 240 | 50 | тип M используют для подключения кондиционеров, сушилок и пр. C — дя аудио-видеотехники |
Мали | C, E | 220 | 50 | |
Мальдивы | A, D, G, J, K, L | 230 | 50 | |
Мальта | G | 230 | 50 | |
Марокко | C, E | 127, 220 | 50 | продолжается переход на 220 В |
Мартиника | C, D, E | 220 | 50 | |
Мексика | A, B | 120 | 60 | |
Микронезия (Федеративные Штаты Микронезии, Яп, Чуук, Понпеи и Косрае) | A, B | 120 | 60 | |
Мозамбик | C, F, M | 220 | 50 | тип M используют у границы с ЮАР, в т. ч. в столицце, Мапуту |
Монако | C, D, E, F | 127, 220 | 50 | |
Молдавия | C, F | 220-230 | 50 | |
Монголия | C, E | 230 | 50 | |
Монсеррат | A, B | 230 | 60 | |
Мьянма (Бирма) | C, D, F, G | 230 | 50 | тип G используется только в дорогих отелях |
Намибия | D, M | 220 | 50 | |
Науру | I | 240 | 50 | |
Непал | C, D, M | 230 | 50 | |
Нигер | A, B, C, D, E, F | 220 | 50 | |
Нигерия | D, G | 240 | 50 | |
Нидерландские Антильские о-ва | A, B, F | 127, 220 | 50 | |
Нидерланды(Голландия) | C, F | 230 | 50 | ранее 220 В |
Никарагуа | A, B | 120 | 60 | |
Новая Зеландия | I | 230 | 50 | |
Новая Каледония | E | 220 | 50 | |
Норвегия | C, F | 230 | 50 | |
Нормандские острова | C, G | 230 | 50 | |
ОАЭ | C, D, G | 220 | 50 | |
Окинава | A, B | 100 | 60 | на военных объектах 120 В |
Оман | C, G | 240 | 50 | |
О. Мэн | C, G | 240 | 50 | |
О-ва Кука | I | 240 | 50 | |
Пакистан | C, D, M, редко G | 230 | 50 | тип M используется длф подключения кондиционеров и пр. |
Панама | A, B | 110 | 60 | |
Папуа-Новая Гвинея | I | 240 | 50 | |
Парагвай | C | 220 | 50 | |
Перу | A, B, C | 220 | 60 | в Таларе также 110 В, в Арекипе 50Гц |
Польша | C, E | 230 | 50 | |
Португалия | C, F | 220 | 50 | |
Пуэрто-Рико | A, B | 120 | 60 | |
Реюньон | E | 220 | 50 | |
Россия | C, F | 220 | 50 | На всей территории бывшего СССР, а также в нек. странах Восточной Европы распространены советские розетки по ГОСТ — подобны типу C, но диаметр штырьков вилки снижен с 4,8 до 4 мм; в результате «евровилка» может не влезть в гнезда «советской» розетки, а контакт «советской» вилки с «евророзеткой» может быть очень ненадежным; промышленный стандарт питания — трехфазная сеть 380 В, 50 Гц |
Руанда | C, J | 230 | 50 | |
Румыния | C, F | 230 | 50 | ранее 220 В, местами сохранились розетки советского стандарта (ГОСТ), см. примечание к России |
Сальвадор | A, B | 115 | 60 | |
Сан-Томе и Принсипи | C, F | 220 | 50 | |
Санта-Лючия | G | 240 | 50 | |
Сейшельские о-ва | G | 240 | 50 | |
Саудовская Аравия | A, B, F, G | 127, 220 | 60 | |
Сектор Газа | C, H, M | 230 | 50 | |
Сенегал | C, D, E, K | 230 | 50 | |
Сент-Винсент и Гренадины | A, C, E, G, I, K | 230 | 50 | |
Сербия | C, F | 220 | 50 | |
Сингапур | G, M, A, C | 230 | 50 | типы A и C используются для подключения аудио-видеотехники, тип M — для кондиционеров, сушилок и т. д.; в отелях широко распространены различные адаптеры |
Сирия | C, E, L | 220 | 50 | |
Словакия | C, E | 230 | 50 | |
Словения | C, F | 230 | 50 | |
Сомали | C | 220 | 50 | |
Судан | C, D | 230 | 50 | |
Суринам | C, F | 127 | 60 | |
США | A, B | 120 | 60 | |
Сьерра-Леоне | D, G | 230 | 50 | |
Таджикистан | C, I | 220 | 50 | |
Таиланд | A, B, C | 220 | 50 | |
Тайвань | A, B | 110, 220 | 60 | 220 В используется для питания кондиционеров и т. п. |
Танзания | D, G | 230 | 50 | |
Того | C | 220 | 50 | в Ломе 127 В |
Тонга | I | 240 | 50 | |
Тринидад и Тобаго | A, B | 115 | 60 | |
Тунис | C, E | 230 | 50 | |
Туркменистан (Туркмения) | B, F | 220 | 50 | |
Турция | C, F | 230 | 50 | |
Уганда | G | 240 | 50 | |
Узбекистан | C, F | 220 | 50 | |
Украина | C, F | 220 | 50 | |
Уругвай | C, F, I, L | 230 | 50 | ранее 220 В |
Фарерские о-ва | C, K | 220 | 50 | |
Фиджи | I | 240 | 50 | |
Филиппины | A, редко B | 220 | 60 | в некторорых регионах, например, в Багио 110 В |
Финляндия | C, F | 230 | 50 | |
Фолклендские о-ва | G | 240 | 50 | |
Франция | C, E | 230 | 50 | ранее 220 В; тип C запрещен к установке более 10 лет |
Французская Гвиана | C, D, E | 220 | 50 | |
Французская Полинезия(Таити) | A, B, E | 110, 220 | 60 , 50 | |
Хорватия | C, F | 230 | 50 | |
Центральноафриканская Республика | C, E | 220 | 50 | |
Чад | D, E, F | 220 | 50 | |
Черногория | C, F | 220 | 50 | |
Чехия | C, E | 230 | 50 | |
Чили | C, L | 220 | 50 | |
Швейцария | C, J | 230 | 50 | |
Швеция | C, F | 230 | 50 | |
Шри-Ланка (Цейлон) | D, M, G | 230 | 50 | в новых домах и дорогих отелях чаще тип G |
Эквадор | A, B | 120 | 60 | |
Экваториальная Гвинея | C, E | 220 | 50 | |
Эритрея | C | 230 | 50 | |
Эстония | C, F | 230 | 50 | |
Эфиопия | C, E, F, L | 220 | 50 | |
ЮАР | M | 220 | 50 | в некоторых городах 250 В |
Ямайка | A, B | 110 | 50 | |
Япония | A, B | 100 | 50 , 60 | 50 Гц в Восточной Японии (Токио, Саппоро, Йокогама, Сэндай), 60 Гц — в Западной (Окинава, Осака, Киото, Кобэ, Нагоя, Хиросима) |
Классификация электрических сетей.
Электрические сети по классу напряжения ранжируются согласно следующим критериям:
- рабочее напряжение;
- выполняемые функции (область применения и назначения);
- масштабные признаки и размеры сети;
- род тока.
Самая основная классификация это:
Классификация электрических сетей по напряжению.
Ультравысокое напряжение.
750 кВ и выше (1150 кВ, 1500 кВ). Линии монтируются на высоких, мощных арочных столбах, на каждой фазе используется три провода, расположенных треугольником. Количество изоляторов не менее 20, это нужно для снижения коронных разрядов и блокирования возможности возникновения электрической дуги.
Сверхвысокое напряжение.
750 кВ, 500 кВ, 330 кВ. Линии монтируются на высоких, мощных арочных столбах, на каждой фазе используется два провода. Количество изоляторов не менее 14, также с целью снижения коронных разрядов блокирования возможности возникновения электрической дуги.
Высокое напряжение (ВН).
220 кВ, 150 кВ, 110 кВ. В линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из 10-40 (2х20) изоляторов, закрепленных на траверсах. На напряжении 150 кВ используется 8 или 9 изоляторов, на напряжении 110 кВ — шесть. По всей длине ЛЭП подвешивают молниезащитные тросы.
Среднее первое напряжение (СН-1).
35 кВ. В таких линиях передач исползуются столбы из материалов с повышенной прочностью на излом, между проводами инсталируется мощная изоляция, выполненная из специальных изоляторов, закрепленных на траверсах. Молниезащитные стальные тросы подвешивают только на тех участках ЛЭП, где высока опасность грозы (например возвышенности).
Среднее второе напряжение (СН-2).
20 кВ, 10 кВ, 6 кВ, 1 кВ. Линии передачи электроэнергии для таких сетей размещают на одиночных столбах увеличенного (по сравнению с сетями до 20 кВ) размера. Также увеличивается размер изоляторов, и расстояние между кабелями.
Низкое напряжение (НН).
0,38 кВ, 0,22 кВ, 0,11 кВ и ниже. Конструктивно представляют из себя бытовую или промышленную проводку локального характера, либо линии электропередач на одиночных столбах, вкопанных в грунт. В таких линиях часто применяется неизолированный кабель для лэп, или даже кабель медный ввгнг, подвешенный на несущем тросе.
Также используются следующие классификации:
Классификация электрических сетей по выполняемым функциям.
- Общего электроснабжения (бытового, промышленнго, сельскохозяйственного назначения и использования на транспорте).
- Автономные (для электроснабжения мобильных и обособленных объектов, таких как, морские и речные суда, авиационные и космические аппараты, географически обособленные и стратегические объекты, в том числе промышленной и оборонной инфраструктуры, и т.д..).
- Промышленно-технологические (для промышленных объектов, в том числе объектов производств и других инженерных сетей).
- Контактные (передачи электрической энергии на железнодорожный, городской электрический и гибридный транспорт, и прочие транспортные средства, включая электропоезда, троллейбусы, трамваи).
Классификация электрических сетей по масштабным признакам и размеру сети.
- Магистральные (связь центров потребления масштаба региона, для таких сетей характерен высокий и сверхвысокий уровень напряжения, большие потоки мощности).
- Региональными (распределение электроэнергии от магистральных сетей с целью электрификации крупных потребителей масштаба города, района, поселка городского типа, для таких сетей характерно среднее и высокое напряжение, но при этом столь же большие потоки мощности, как у магистральных сетей).
- Районными (распределение электроэнергии от региональных сетей, автономных источников питания обычно не имеют, предназначены для электрификации малых и средних объектов-потребителей, для таких сетей характерно низкое и среднее напряжение, с незначительным мощностным потоком);
- Внутренними (распределение электроэнергии внутри небольших локаций, масштабов малого населенного пункта, или городского округа, района крупного города, иногда имеют оснащены резервным источником питания, для таких сетей характерны низкие уровни напряжения).
- Сетями электрической проводки, или сети самого нижнего уровня (электрификация отдельных зданий, цехов или помещений, для таких сетей характерны малые потоки мощности на низком (бытовом) уровне напряжения).
![]() |
![]() |
![]() |
![]() |
![]() |
Классификация электрических сетей по роду тока.
C переменным трехфазным током:
Передача тока осуществляется по трем проводникам со смещением фазы переменного тока в каждом из них на 120 град. относительно других.;
C переменным однофазным током:
Электроэнергия передается по двум проводникам через электропроводку бытового типа от подстанции или распределительного щита;
C постоянным током:
Для узкоспециализированных сетей (автономное электроснабжение, ряд специальных сетей сверхвысокого напряжения);