По какой формуле можно посчитать силу тока на данном участке цепи
Перейти к содержимому

По какой формуле можно посчитать силу тока на данном участке цепи

  • автор:

По какой формуле можно посчитать силу тока на данном участке цепи

Различные действия тока, такие, как нагревание проводника, магнитные и химические действия, зависят от силы тока. Изменяя силу тока в цепи, можно регулировать эти действия. Но чтобы управлять током в цепи, надо знать, от чего зависит сила тока в ней.
Мы знаем, что электрический ток в цепи — это упорядоченное движение заряженных частиц в электрическом поле. Чем сильнее действие электрического поля на эти частицы, тем, очевидно, и больше сила тока в цепи. Но действие поля характеризуется физической величиной — напряжением. Поэтому можно предположить, что сила тока зависит от напряжения. Установим, какова эта зависимость, на опыте.

На рисунке изображена электрическая цепь, состоящая из источника тока — аккумулятора, амперметра, спирали из никелиновой проволоки, ключа и параллельно присоединенного к спирали вольтметра.
Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько , же раз увеличивается сила тока. Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника.
На рисунке показан график зависимости силы тока в проводнике от напряжения между концами этого проводника. На графике в условно выбранном масштабе по горизонтальной оси отложено напряжение в вольтах, а по вертикальной — сила тока в амперах.

Зависимость силы тока от напряжения мы уже установили. На основании опытов было показано, что сила тока в проводнике прямо пропорциональна напряжению на концах проводника. Следует обратить внимание, что при проведении опыта сопротивление проводника не менялось, одна и та же спираль служила участком цепи, на котором измеряли напряжение и силу тока. При проведении физических опытов, в которых определяют зависимость одной величины от другой, все остальные величины должны быть постоянными, если они будут изменяться, то установить зависимость будет сложнее. Поэтому, определяя зависимость силы тока от сопротивления, напряжение на концах проводника надо поддерживать постоянным. Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту.
На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различными сопротивлениями. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже в таблице приведены результаты опытов с тремя различными проводниками:
В первом опыте сопротивление проводника 1 Ом и сила тока в цепи 2 А. Сопротивление второго проводника 2 Ом, т.е. в два раза больше, а сила тока в два раза меньше. И наконец, в третьем случае сопротивление цепи увеличилось в четыре раза и во столько же раз уменьшилась сила тока. Напомним, что напряжение на концах проводников во всех трех опытах было одинаковое, равное 2 В. Обобщая результаты опытов, приходим к выводу: сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома по имени немецкого ученого Ома, открывшего этот закон в 1827 г. Закон Ома читается так: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению: I=U/R здесь I — сила тока в участке цепи, U — напряжение на этом участке, R — сопротивление участка.Закон Ома — один из основных физических законов.
На рисунке зависимость силы тока от сопротивления проводника при одном и том же напряжении на его концах показана графически. На этом графике по горизонтальной оси в условно выбранном масштабе отложены сопротивления проводников в омах, по вертикальной — сила тока в амперах. Из формулы I=U/R— следует, что U=IR и R=U/I. Следовательно, зная силу тока и сопротивление, можно по закону Ома вычислить напряжение на участке цепи, а зная напряжение и силу тока — сопротивление участка. Сопротивление проводника можно определить по формуле R=U/I , однако надо понимать, что R — величина постоянная для данного проводника и не зависит ни от напряжения, ни от силы тока. Если напряжение на данном проводнике увеличится, например, в 3 раза, то во столько же раз увеличится и сила тока в нем, а отношение напряжения к силе тока не изменится.

По какой формуле можно посчитать силу тока на данном участке цепи

Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.

Если известна мощность и напряжение

Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

P=UI

После несложных мы получаем формулу для вычислений

I=P/U

Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

Р1 = Р2/η

Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

Шильдик электродвигателя

Находим полную мощность с учетом cosФ (он также указывается на шильдике):

S = P1/cosφ

Определяем потребляемый ток по формуле:

Iном = S/(1,73·U)

Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

Если известно напряжение или мощность и сопротивление

Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.

I=U/R

Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:

P=UI

При этом согласно тому же закону Ома:

U=IR

P=I 2 *R

Значит расчёт проводим по формуле:

I 2 =P/R

Или возьмем выражение в правой части выражения под корень:

I=(P/R) 1/2

Если известно ЭДС, внутреннее сопротивление и нагрузка

Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:

I=E/(R+r)

Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.

Его формула выглядит так:

Q=I 2 Rt

Тогда расчет проводите так:

I 2 =QRt

Или внесите правую часть уравнения под корень:

I=(Q/Rt) 1/2

Несколько примеров

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

Тогда рассчитать силу тока можно по закону Ома:

При параллельном соединении двух элементов Rобщее можно рассчитать так:

Тогда дальнейшие вычисления можно проводить так:

2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.

Смешанное соединение в цепи

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Теперь схема примет вид:

Электрическая цепь

Далее находим ток по тому же закону Ома:

Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!

Наверняка вы не знаете:

  • Как рассчитать сечение кабеля
  • Как перевести амперы в киловатты
  • Как найти провод в стене

Опубликовано 09.10.2018 Обновлено 09.10.2018 Пользователем Александр (администратор)

По какой формуле можно посчитать силу тока на данном участке цепи

Построим график зависимости амплитуды тока от частоты подаваемого напряжения, т.е. график функции (6), для разных значений активного сопротивления. Этот график изображён на рис. 6, верхняя кривая соответствует маленькому сопротивлению, нижняя –большому. Из формулы (6) видно, что при частоте, равной нулю, равна нулю также амплитуда тока. В асимптотическом случае при стремлении частоты ω к бесконечности амплитуда тока также стремится к нулю.

Функция имеет единственный максимум, соответствующий минимальному значению знаменателя дроби, при равенстве нулю реактивного сопротивления X = | X L − X C | = | ω L − 1 ω C | . Отсюда следует, что максимальная амплитуда тока наблюдается при частоте, равной ω 0 = 1 L C , т.е. при частоте свободных незатухающих колебаний колебательного контура с индуктивностью L и ёмкостью С. Возрастание амплитуды тока при частоте ω0 является типичным резонансным явлением, а частота ω 0 = 1 L C

Электрический резонанс, наблюдаемый при последовательном соединении активного сопротивления, индуктивности и ёмкости, называется резонансом напряжений. Согласно (10) при резонансе разность фаз между током и напряжением равна нулю, т.е. ток и напряжение совершают колебания в одинаковой фазе. Полное сопротивление цепи при резонансе равно своему наименьшему возможному значению – активному сопротивлению.

Вычислим тепловую мощность, выделяемую в цепи переменного тока. За малое время dt электрические силы в цепи совершают работу d A = U d q = U I d t , где dq – протекающий за это время заряд. Подставляя сюда ток и напряжение из формул (8) и (9), получаем d A = U 0 I 0 cos ω t cos ( ω t − φ ) . Интегрируем это соотношение по времени за один период от нуля до T = 2 π ω , при этом пользуемся тригонометрическим соотношением cos α cos β = 1 2 ( cos ( α-β ) + cos ( α+β ) ) . Таким образом, полная работа электрических сил за один период равна A = 1 2 U 0 I 0 ∫ 0 T ( cos φ + cos ( 2 ω t − φ ) ) d t = U 0 I 0 T cos φ 2 , а второй интеграл равен нулю. Таким образом, средняя мощность электрических сил за период равна

N = A T = 1 2 U 0 I 0 cos φ . (11)

Эта мощность выделяется на активном сопротивлении в виде тепла, константа cosφ в электротехнике обычно называется коэффициентом передачи мощности. При резонансе в цепи сдвиг фаз между током и напряжением равен нулю, следовательно, коэффициент передачи мощности равен единице. Таким образом, в случае резонанса средняя тепловая мощность

N = 1 2 I 0 2 R = U 0 2 2 R .

Эта формула напоминает обычный закон Джоуля – Ленца для постоянного тока, отличие только в двойке в знаменателе. Чтобы избавиться от этой двойки и пользоваться привычной формулой Джоуля – Ленца, вводят эффективные или действующие значения силы тока и напряжения, отличающиеся от амплитудных значений этих величин в 2 раз: U эф = U 0 2 , I эф = I 0 2 . Именно эффективные значения величин измеряют универсальные электроизмерительные приборы, которыми можно пользоваться как в цепях постоянного, так и переменного тока.

Кадр из компьютерного эксперимента приведён на рис. 7. В правом верхнем углу находится поле, на котором помещаются осциллограммы напряжения (синий цвет) и тока (красный цвет). Амплитуда тока рассчитывается по формуле (6). На осциллограмме её можно измерить при помощи линейки, которая перемещается по рабочему полю в горизонтальном направлении при помощи мышки. Сдвиг фаз между током и напряжением вычисляется по формуле (10), на осциллограмме её можно оценить визуально по горизонтальному смещению относительно друг друга синусоид тока и напряжения. В частности, на рис. 7 сдвиг фаз – около 60 градусов, а амплитуда тока около 12 единиц.

В верхнем левом углу рисуется схема соответствующей электрической цепи, вид которой выбирается при помощи четырёх радиокнопок на поле под осциллограммами. В нижнем левом углу помещаются три радиокнопки для задания периода колебаний подаваемого в цепь напряжения.

Распечатка программы данного компьютерного эксперимента приведена в приложении.

Как разными способами найти силу тока

Знание силы тока в электрической цепи является в некоторых случаях необходимым. Ее определяют не только с помощью непосредственного измерения, но и расчетов. В последнем случае нужную информацию можно получить на основе технических характеристик оборудования.

Зависимости между основными электрическими величинами

Зависимости между основными электрическими величинами

Зачем нужно находить силу тока

Любое вещество состоит из атомов, которые включают в себя положительно заряженное ядро и вращающиеся вокруг него электроны. При отсутствии электрического поля движение этих частиц является хаотичным. Но как только проводник становится частью электрической цепи, подключённой к источнику питания, электроны начинают двигаться по направлению к положительному полюсу.

Ток проявляется через заряд. Каждый электрон несёт в себе элементарный отрицательный электрический заряд. Сила тока — это количество электронов, проходящих через поперечное сечение проводника за какой-то отрезок времени. Следовательно, можно сделать вывод, что рассматриваемый параметр определяют заряд и время.

Электроток выраженный через заряд и время

Электроток, выраженный через заряд и время

Найти силу тока в проводнике можно только в том случае, когда электрическая цепь подключена к источнику питания. Например, это может быть включение бытового прибора в электросеть с переменным напряжением, равным 220 В. Разным приборам для работы нужна разная мощность. В некоторых случаях даже выключенное оборудование может потреблять небольшое количество электричества, если оставить его вилку в розетке. Поэтому рассчитать силу тока в цепи можно через мощность и напряжение.

Слишком интенсивный электроток способен создавать проблемы. Он может, например, привести к перегреву деталей или к их разрушению. Если большой ток пройдёт через человека, то это нанесет серьёзный вред его здоровью или даже станет опасным для жизни. Для нормального и безопасного функционирования оборудования важно, чтобы электроток соответствовал установленным нормативам. Определение силы тока по мощности и напряжению позволяет проверить, насколько она соответствует требованиям.

Вычисление тока, если известны мощность и напряжение

Есть простой способ, как узнать ток, зная мощность и напряжение. В данном случае рассчитать постоянный ток можно по формуле:

Вычисление электротока при известных значениях напряжения и мощности

Расчет для переменного тока через мощность усложняется, поскольку его величина и направление постоянно меняются. Это обстоятельство нужно учитывать при расчетах. Если питание однофазное, то используется такая формула:

Формула электротока для однофазной сети

Чтобы определить силу переменного тока в трехфазной сети, следует воспользоваться формулой:

Расчет для трехфазной сети

При рассмотрении переменного тока нужно учитывать не только активную, но и реактивную мощность. Первая связана с активным сопротивлением, а вторая — с реактивным (ёмкостным и индуктивным). Соотношение между различными видами отражается с помощью cos φ.

Косинус угла «фи» обычно указывают в технической документации прибора. Если эту информацию нельзя получить из документации, то в расчетах очень мощных устройств принимают значение 0.8. Для большинства обычных бытовых приборов в вычислениях используют 0.95.

Подставив в формулу, применяемую для определения силы тока на участке цепи, значения напряжения U = 220 В для однофазной цепи и 380 В для трехфазной, а также cos φ = 0.95, получим следующие выражения:

Вычисление силы тока для однофазной и трехфазной сети

Как видим, сила тока в трехфазной и однофазной сети при одинаковой нагрузке будет разной. В однофазной она втрое больше, чем в трехфазной.

Определение мощности прибора

Перед тем как найти силу электрического тока, нужно определить величину используемой мощности:

  • Ее значение должно указываться в технической документации. Однако она не всегда доступна. В частности, документация может быть утеряна.
  • На задней панели приборов часто имеется наклейка, на которой приведены важнейшие характеристики устройства. В числе прочих обычно указывают мощность.

Задняя панель прибора с указанием основных данных

Задняя панель прибора с указанием основных данных

  • Можно воспользоваться таблицей с указанием средних значений мощности для различных видов устройств.

Мощность разных приборов

Мощность разных приборов

При вычислениях необходимо помнить, что пусковая мощность может превышать рабочую. Расчёт силы тока должен учитывать обе этих величины. Когда пусковая мощность вызывает резкое мгновенное увеличение силы тока, оно не должно превышать допустимой величины. Для бытовой техники пусковую мощность указывают редко. Поэтому перед тем как рассчитать силу тока, необходимо обратиться к соответствующим справочникам, чтобы найти определенное значение мощности. Для получения ее точной величины следует провести измерение ваттметром.

Вычисление тока при известных значениях напряжения и сопротивления

Если известно напряжение и сопротивление, то сила тока вычисляется по формуле, вытекающей из закона Ома:

Вычисление электротока согласно закону Ома

Если известны значения ЭДС, внутреннего сопротивления и нагрузки, то можно найти силу тока, используя закон Ома для полной цепи:

Определение электротока через эдс

Использование мощности и сопротивления

Как известно, мощность можно находить по формуле.

Определение мощности

Применив в данном выражении закон Ома, можно привести его к следующему виду:

Преобразованная формула мощности

Теперь силу тока можно выразить так:

Вычисление электротока если известны мощность и сопротивление

Следовательно, вычислить силу тока можно разными способами.

Непосредственное измерение силы тока

Величину силы тока можно не только рассчитывать, но и измерять, используя такие приборы, как амперметр или мультиметр. Любой из них при измерениях должен стать частью электрической цепи. Поэтому прибор нужно подключать последовательно.

Использование амперметра и вольтметра

Если нет большой нужды измерять силу тока амперметром, то лучше вычислить этот параметр, используя формулы, даже если для этого придется измерить напряжение. Вольтметром эта процедура осуществляется без разрыва электроцепи, чего нельзя сделать при использовании амперметра.

Также применяется магнитометрический способ. Примером его использования являются токовые клещи. Перед тем как определить силу электротока, их устанавливают так, чтобы они охватывали провод. Поскольку вокруг проводника при протекании тока образуется магнитное поле, которое клещи улавливают, то по его характеристикам прибор определяет силу тока в цепи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *