Величина индуцированной эдс зависит от
Перейти к содержимому

Величина индуцированной эдс зависит от

  • автор:

Электромагнитная индукция

Если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет электродвижущая сила , называемая ЭДС индукции .

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет электричсекий ток, называемый индукционным током.

Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией .

Электромагнитная индукция — это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в электротехнике. На использовании его основано устройство различных электрических машин.

Электромагнитная индукция

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля.

Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой Е = Blv,

где Е — ЭДС индукции; В — магнитная индукция; I — длина проводника; v — скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля.

Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.

Правило правой руки

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри катушки постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим.

Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки.

Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол.

Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором.

Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

Закон Ленца для электромагнитной индукции

Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид.

Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле — поле тока.

Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.

При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.

Индукционные токи в массивных проводниках

Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках.

Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые вихревые токи распространяются по массивному проводнику и накоротко замыкаются в нем.

Трансформатор

Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами.

Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа индукционных нагревательных печей, счетчиков электрической энергии и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

№20 Самоиндукция. Индуктивность. Синусоидальный ток в индуктивности.

Если в катушке, изображенной на рис. 20.1, магнитное поле создается собственным током i, то магнитный поток называется потоком самоиндукции и обозначается ФL, а индуцируемая в катушке ЭДС еL – ЭДС самоиндукции. В соответствии с формулой (20.1) она равна:

где ψ – потокосцепление самоиндукции, величина, пропорциональная протекающему по катушке току: ψ = Li.

Коэффициент пропорциональности L между потокосцеплением и током называется собственной индуктивностью или просто индуктивностью катушки (контура). Она зависит от формы и размеров катушки, а также от магнитной проницаемости сердечника. Ее размерность В x с/А=Ом x с. Эта единица измерения называется генри (Гн).

Подставляя последнее выражение в (2.15) и полагая L = const, получаем следующую формулу, определяющую ЭДС самоиндукции:

На рис. 2.18 показано изображение индуктивности на электрической схеме; uL – напряжение на зажимах катушки, обусловленное электродвижущей силой самоиндукции, или другими словами, напряжение, наведенное в катушке собственным переменным магнитным полем.

Рис. 2.18 — Обозначение индуктивности

Все три стрелки на схеме (i, eL, uL) принято направлять в одну сторону. Раньше мы видели, что при одинаковых направлениях стрелок напряжения и ЭДС они имеют разные знаки. Поэтому:

Знак минус в правой части формулы (2.16) обусловлен принципом Ленца, определяющим направление индуцированной ЭДС. В рассматриваемом случае он может быть сформулирован следующим образом:

ЭДС самоиндукции направлена так, что своим действием препятствует причине, вызвавшей ее появление.

Причина появления ЭДС самоиндукции – изменение тока. Поэтому при возрастании тока она направлена ему навстречу, при уменьшении тока – в одну с ним сторону.

Препятствуя изменению тока, ЭДС самоиндукции оказывает ему сопротивление, которое называется индуктивным и обозначается хL. В соответствии с формулой (2.16) его величина определяется индуктивностью и скоростью изменения тока, т.е. частотой. Формула, определяющая индуктивное сопротивление, имеет вид:

В цепях постоянного тока такого понятия мы не встречали, так как при постоянных магнитных полях ЭДС самоиндукции не возникает. Пусть ток, протекающий по индуктивности, определяется выражением (2.13). Тогда напряжение на ее зажимах, в соответствии с формулой (2.17), равно:

Это – мгновенное значение напряжения. Его амплитуда равна:

Аналогичное выражение получается (после деления на √2) и для действующих значений:

где Bl — индуктивная проводимость.

Запишем соответствующие формулы в символической форме:

Аналогично для действующих значений

Уравнения, связывающие напряжение и ток в индуктивности, как в вещественных, так и в комплексных числах, представляют собой закон Ома для индуктивности.

Начальная фаза напряжения больше начальной фазы тока на 90° . В индуктивности ток отстает от напряжения на четверть периода. Выражение закона Ома, записанное в символическое форме, указывает на этот сдвиг фаз. Вспомним, что умножение вектора на j приводит к его повороту на угол 90° против часовой стрелки.

Рис. 2.19 — Векторная диаграмма напряжения и тока в индуктивности

Согласно уравнениям (2.18) UL получается путем умножения произведения IxL на j, в результате чего вектор UL оказывается повернутым относительно вектора I.

Пример 2.5. Мгновенное значение напряжения на индуктивности определяется выражением uL = 200 sin(ωt+60°)В. Записать выражение мгновенного значения тока, если L = 63,67 мГн, а частота питающего напряжения f = 50 Гц. Построить векторные диаграммы напряжения и тока.

Решение. При частоте f = 50 Гц циклическая частота ω = 314 с-1, и индуктивное сопротивление xL = ωL = 20 Ом. Амплитуда тока равна:

Так как в индуктивности ток отстает от напряжения на четверть периода, его начальная фаза меньше начальной фазы напряжения на 90° : ψi = ψu – 90° = 60–90–30°.

Итак, i = 10sin (ωt–30°). Векторная диаграмма показана на рис. 2.20.

Рис. 20.1 — Векторная диаграмма

3.6. Индуктивные преобразователи

Индукционным является преобразователь, в котором входная механическая величина преобразуется в индуцированную электродвижущую силу (ЭДС). Работают эти преобразователи на основе закона Фарадея, согласно которому индуцированная ЭДС Е определяется скоростью изменения магнитного потока Ф, сцепленного с катушкой из W витков.

Поэтому естественной входной величиной индукционного преобразователя является скорость линейного или углового механического перемещения.

По принципу действия индукционные преобразователи можно разделить на две группы. В преобразователях первой группы магнитное сопротивление на пути магнитного потока в процессе работы остается неизменным, а ЭДС наводится за счет линейного или углового перемещения катушки или постоянного магнита. Конструктивные схемы таких преобразователей показаны на рис.1.

Рис. 1. Конструктивные схемы индукционных преобразователей с постоянным магнитным сопротивлением.

Подвижной частью преобразователяна рис. (1.а) является катушка 3, совершающая линейное перемещениемежду полюсными наконечниками 2 неподвижной магнитной системы, состоящей из двух постоянных магнитов 1 и магнитопровода 4. Подвижнаячасть преобразователя на рис. (1.б) выполнена в виде ротора 3 с обмоткой, вращающегося между полюсными наконечниками 2 постоянного магнита 1. В конструкции рис. (1.в) катушка 3 и магнитопровод 2 неподвижны, угловое перемещение совершает постоянный магнит 1.

В преобразователях второй группы постоянный магнит и катушка неподвижны, а индуцированная ЭДС наводится за счет изменения магнитного потока вследствии колебания магнитного сопротивления. Подвижной частью таких преобразователей является тот или иной участок магнитопровода, совершающий линейное или угловое перемещение. Наиболее распространенные конструктивные схемы таких преобразователей даны на рис.2.

Рис. 2. Конструктивные схемы ин­дукционных преобразователей с перемен­ным магнитным сопротивлением.

В преобразователе на рис. 2.a магнитный поток между полюсами постоянного магнита 1 определяется положением ферромагнитного кольца 2 с прорезями. В зависимости от положения кольца магнитный поток проходит через витки катушки 3 или замыкается по кольцу. Таким образом, при вращении кольца происходит изменение магнитного потока с частотой, пропорциональной скорости вращения и числу прорезей.

На рис. 2.б изображена конструктивная схема наиболее распространенного в настоящее время индукционного преобразователя. Собственно преобразователь выполнен в виде законченной конструкции и состоит из постоянного магнита 1 с надетой на него катушкой 2. Магнитный поток замыкается или полностью по воздуху, или частично, по металлу диска 3 из ферромагнитного материала. При вращении диска возникает модуляция магнитного потока и на выходе преобразователя появляется импульсный сигнал, частота которого определяется числом оборотов диска и числом выступов. Амплитуда импульсного сигнала существенно зависит от расстояния между преобразователем и вращающимся телом. Она быстро падает с увеличением этого расстояния, обычно не превышающего нескольких миллиметров. Кроме того, амплитуда импульсного сигнала зависит и от скорости вращения. При малых скоростях величина dФ/dt уменьшается настолько, что полезный сигнал становится сравним с уровнем шумов.

В измерительной технике индукционные преобразователи используются в аналоговом и дискретном режимах работы. В первом случае информационным параметром выходного сигнала является амплитуда индуцированной ЭДС Е, во втором случае информация о скорости перемещения подвижной части преобразователя заключена в числе импульсов ЭДС Е за фиксированный отрезок времени или в частоте выходного сигнала.

Второй вариант использования обеспечивает большую точность измерения, так как на число импульсов на выходе индукционного преобразователя, например построенного по схеме на рис. 2.б, практически не влияют внешние дестабилизирующие факторы. Повышается и помехоустойчивость при передаче сигналов по линии связи.

При аналоговом принципе использования индукционных преобразователей основным источником погрешности является температура, так как приходится считаться с зависимостью индукции постоянного магнита от температуры, зависимостью от температуры магнитной проницаемости стальных участков магнитопровода и изменением сопротивления катушки. Наиболее распространенный способ уменьшения температурной погрешности — использование термомагнитных шунтов, как элементов магнитопровода преобразователя.

Шунт (деталь 4 на рис.1) прикрепляется к полюсным наконечникам магнитной системы таким образом, что он шунтирует (ответвляет на себя) магнитный поток в воздушном зазоре. Изготавливаются термомагнитные шунты из специальных сплавов никеля и меди, обладающих крутопадающей зависимостью величины индукции от температуры. Таким образом, с увеличением температуры уменьшается общий магнитный поток, создаваемый постоянным магнитом, и одновременно уменьшается часть магнитного потока, проходящего через шунт. Вследствие этого магнитный поток через воздушный зазор увеличивается, что компенсирует рост сопротивления катушки и уменьшение индукции постоянного магнита.

Амплитуда выходного сигнала с индукционных преобразователей может достигать значений нескольких вольт при отсутствии ограничений по массе и габаритам. Поэтому каких-либо особых требований к усилительно- преобразующей аппаратуре эти преобразователи не предъявляют и могут использоваться с высокоомной и низкоомной нагрузкой. Если при измерениях с использованием индукционных преобразователей нужно определить величину механического перемещения или ускорения, выходной сигнал с преобразователя интегрируется или дифференцируется соответствующими усилителями.

При расчете электрической цепи нагруженного на низкоомную нагрузку индукционного преобразователя следует учитывать реакцию поля катушки. Ток в катушке должен быть достаточно мал, чтобы индукция поля катушки, определяемая магнитодвижущей силой последней, была значительно меньше индукции постоянного магнитного поля в зазоре, обусловленной постоянным магнитом.

Индукционные преобразователи используются в зарезонансном режиме работы, причем их резонансная частота определяется в основном массой подвижных частей и лежит в пределах от единиц до двух-трех десятков герц.

В силу принципа действия градуироваться эти преобразователи могут только в динамическом режиме.

35. Электродинамика Читать 0 мин.

Магнитный поток, проходящий через площадь S равен:

Ф ― величина магнитного потока [Вб],

B ― индукция магнитного поля [Тл],

α ― угол между нормалью $\overrightarrow$ к площади контура и вектором индукции магнитного поля $\overrightarrow$.

Если вектор индукции магнитного поля $\overrightarrow$ перпендикулярен площади контура, то магнитный поток равен:

Максимальное значение потока будет тогда, когда косинус будет максимальным (cosα = 1), то есть угол между вектором $\overrightarrow$ и вектором нормали к пластинке равен 0°, чему соответствует картинка 3. Наименьшее же значение потока будет тогда, когда косинус будет равен нулю (cosα = 0), то есть угол между нормалью к пластинке и вектором индукции равен 90°, чему соответствует картинка 4.

Электромагнитная индукция ― явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через контур. Если контур разомкнут, то на его концах наблюдается разносность потенциалов, равная ЭДС индукции.

ЭДС электромагнитной индукции возникает только тогда, когда изменяется магнитный поток.

Закон Фарадея об электромагнитной индукции и гласит, что индуцируемая ЭДС прямо пропорциональна скорости изменения магнитного потока:

$\varepsilon_i $ ― ЭДС электромагнитной индукции [B],

$\frac>$ ― скорость изменения магнитного потока [Вб/с],

Ф ― изменение магнитного потока [Вб],

t ― время, за которое происходит это изменение [c].

Кроме того, ЭДС индукции равна производной магнитного потока по времени:

  • ― ЭДС электромагнитной индукции [B],
  • ― производная магнитного потока по времени [Вб/с].

Задача 1

Замкнутый контур площадью S из тонкой проволоки помещён в магнитное поле. Плоскость контура перпендикулярна вектору магнитной индукции поля. В контуре возникают колебания тока с амплитудой = 35 мА, если магнитная индукция поля меняется с течением времени в соответствии с формулой B = acos (bt), где a = 6 · 10-3Тл, b = 3500 c-1. Электрическое сопротивление контура R = 1,2 Ом. Чему равна площадь контура?

Решение:

Обратите внимание на величины, данные в условии. Они здесь совсем не такие, к которым вы привыкли, потому что не дано значение магнитного поля, а дана зависимость магнитного поля от времени. Посмотрим, как это скажется на решении задачи.

Поскольку магнитное поле, а вместе с ним и поток меняются, то будет возникать ЭДС индукции, именно это ЭДС и вызовет электрический ток, поэтому запишем закон электромагнитной индукции.

По закону электромагнитной индукции $\varepsilon_i = -\frac>$

ЭДС — это изменение магнитного потока за время. Ничего в определении ЭДС не сказано про это самое время. Дело в том, что изменение какой-то величины за небольшой промежуток времени называется производной по времени. То есть наше ЭДС, которое является изменением магнитного потока за небольшой промежуток времени, это просто производная магнитного потока по времени $\varepsilon_i = -\text_t’$

И это очень важный момент, без которого мы не сможем решить такого рода задачу.

Теперь посчитаем ЭДС индукции.

Напишем, чему равен магнитный поток Ф = BS = acos (bt) · S.

ЭДС индукции — это производная магнитного потока по времени. Теперь придётся вспомнить немного математики. Множители “a” и “S” перед косинусом не зависят от времени, поэтому производная их не трогает, а вот у косинуса в скобках стоит зависимость от времени, поэтому именно от косинуса производную и нужно взять.

Обратите внимание на полученную формулу магнитного потока. В ней стоит просто множитель aS перед сложной функцией косинуса

Взяв производную от этой функции, получаем Ф´ = –abS · sin (bt). А теперь, раз мы знаем производную магнитного потока, значит, знаем и ЭДС индукции, потому что $\varepsilon_i = -\text_t’$

Подставив сюда значение производной, получим $\varepsilon_i = -\text_t’$ = abS · sin (bt).

Мы получили значение ЭДС. Кроме этого, мы знаем сопротивление и максимальную силу тока, поэтому запишем закон Ома.

По закону Ома $I = \frac$ , подставив сюда значение ЭДС, получаем $I = \frac$.

Мы получили зависимость силы тока от времени.

Из-за синуса, который стоит в этой формуле, ток постоянно меняет свое значение, то он становится больше, то меньше, поскольку синус меняет своё значение от -1 до 1.

В условии дано максимальное значение силы тока, которое протекает по контуру. Когда эта величина будет максимальной? В тот момент, когда синус будет максимальным, то есть равный единице. Поэтому запишем sin (bt) = 1.

Максимальное значение тока будет в тот момент, когда будет максимальным значение ЭДС индукции, то есть когда, $I_ = \frac$.

Отсюда можно легко выразить площадь контура $S = \fracR>$, подставив сюда все значения, получим $S = \fracR> = \frac A\cdot 1,2\text>\text \cdot 35000c^> = 0,002\text^2$

Ответ: 0,002

Как видно из формулы магнитного потока Ф = BScosα, изменение магнитного потока может быть вызвано разными факторами:

  • увеличением или уменьшением модуля индукции магнитного поля (т. е. величины $\frac$);
  • изменением направления вектора магнитного поля (т. е. изменением угла α);
  • деформацией контура, причем такой деформацией, при которой изменяется площадь контура (т. е. изменением величины $\frac$ );
  • изменением нескольких из этих величин одновременно.

Таким образом, изменение модуля или направление вектора магнитной индукции или площади контура неизбежно приводят к тому, что в контуре возникает электродвижущая сила.

Если нарисовать график зависимости магнитного потока, то он может выглядеть либо так: тогда поток не будет менятьсяи ЭДС не возникает.

Либо так, тогда будет меняться поток и возникать ЭДС:

Знак «минус» перед скоростью изменения магнитного потока в формуле отражает правило Ленца: индуцированный ток всегда направлен так, чтобы магнитное поле, которое он создает, препятствовало изменению магнитного потока.

Если магнитный поток, проходящий через площадь контура, уменьшается, то магнитное поле индуцированных токов будет стремиться его увеличить.

Если поток увеличиваетсямагнитное поле индуцированных токов будет стремиться его уменьшить.

Задача 2

Два проводящих кольца расположены относительно проводника с током в одной плоскости, как это показано на рисунке. В каком направлении будет индуцироваться ток в этих кольцах, если начать двигать их в направлении проводника?

Решение:

Первым делом необходимо понять, как вообще может возникать индуцированный ток, если даже магнитного поля нет?

Его направление мы можем определить по правилу правого винта. Отметим это на рисунке.

Теперь эти два проводника начинают двигать. Разве от этого меняется поток? Ведь площадь остаётся та же самая, угол между нормалью и вектором тоже не меняется. Однако, чем ближе к проводнику с током, тем сильней поле, а чем дальше от него, тем слабее! Поэтому, когда мы двигаем кольца к проводнику, мы увеличиваем поток, ведь ближе поле сильнее. Значит, будет появляться ток, а его направление можно определить по правилу Ленца. Что нам говорит правило Ленца?

Раз поток увеличивается, то по правилу Ленца ток будет индуцироваться так, чтобы уменьшить поток, то есть магнитное поле в левом кольце будет направлено от нас, а в правом ─ на нас. А значит, по правилу правого винта мы можем определить, что ток будет течь по часовой стрелке слева и против часовой стрелки справа.

Движение проводников

Если к концам проводника, движущегося в магнитном поле, подключить вольтметр, то прибор покажет наличие разности потенциалов на концах проводника. Таким образом, когда проводник перемещается в области с магнитным полем, в нем возникает электромагнитная движущая сила (ЭДС).

Согласно закону Лоренца, в проводнике, движущемся в магнитном поле, создается ЭДС $|\varepsilon_i| = Blv\sin\alpha$;

$\varepsilon_i$― ЭДС электромагнитной индукции [B],

B ― индукция магнитного поля [Тл],

v ― скорость движения проводника [м/с],

α ― угол между направлением вектора скорости $\overrightarrow$ и длиной проводника $\overrightarrow$ , если вектор индукции магнитного поля $\overrightarrow$перпендикулярен проводнику и вектору скорости его движения: $\overrightarrow \perp \overrightarrow, \overrightarrow \perp \overrightarrow$

Используя силу Лоренца, можно получить это определение ЭДС. Сила Лоренца ― это проявленное действие магнитного поля на заряженную частицу.

В проводнике присутствует большое количество свободных зарядов (именно это отличает проводники от диэлектриков), и на каждый из зарядов действует сила Лоренца, перемещая их по проводнику так, что в одной его части скапливается отрицательный заряд, а в другой, соответственно, положительный. Это распределение зарядов и является физической основой для возникновения электродвижущей силы.

На рисунке показано как сила Лоренца, действующая на каждый из зарядов проводника, создаёт ЭДС в проводнике. Если одиночный отрицательный заряд попадает в магнитное поле, направленное от нас, то, согласно правилу левой руки, направление его движения изменяется так, как показано на рисунке. Если в область с таким же магнитным полем входит проводник, суммарный заряд которого равен нулю, но внутри которого находятся электроны, способные свободно перемещаться в проводнике, то электроны стекаются в один конец проводника. Так как электроны переместились в один конец проводника, то этот конец приобретает отрицательный заряд, а противоположный ему ― положительный. Таким образом, в проводнике возникает разность потенциалов и электродвижущая сила.

В некоторых случаях удобно решать задачи, используя определение ЭДС через закон Лоренца (обычно это задачи о движении прямолинейного проводника в поле), в других ― через закон Фарадея.

В проводнике, движущемся в магнитном поле, образуется разность потенциалов U = lvBsinα;

U — разность потенциалов [В],

v — скорость движения проводника $\big[ \frac> \big]$

B — индукция магнитного поля [Тл],

α — угол между направлением скорости и длиной проводника.

В случае, если есть какой-то замкнутый контур, то ЭДС в нем возникает только тогда, когда меняется магнитный потокчерез этот контур. В случае же тонкого стержня, для которого нельзя применить понятия магнитного потока, потому что у него просто нет площади, ЭДС возникает при движении в постоянном магнитном поле.

В случае, если в задаче дана проводящая рамка или контур, для определения ЭДС (напряжения) используем формулу $\varepsilon_i = — \frac>$

В случае, если в задачи дан проводник, движущейся в поле, для определения ЭДС (напряжения) используем формулу $\varepsilon$ =U= lvBsinα.

Задача 3

В заштрихованной области на рисунке действует однородное магнитное поле, перпендикулярное плоскости рисунка с индукцией В = 0,1 Тл. Квадратную проволочную рамку, сопротивление которой 10 Ом и длина стороны 10 см, перемещают в этом поле в плоскости рисунка поступательно равномерно с некоторой скоростью υ. При попадании рамки в магнитное поле в положении 1 в ней возникает индукционный ток, равный 1 мА. Какова скорость движения рамки?

Решение:

Зная силу тока и сопротивление, что можно найти? Мы сможем найти напряжение, то есть ЭДС, а ЭДС, уже можно легко связать со скоростью движения рамки.

Составим цепочку. Мы знаем магнитное поле (В), длину стороны (a), сопротивление (R) и силу тока (I), а найти нужно скорость(v).

Зная ток и сопротивление, что сразу можно найти? Напряжение, то есть ЭДС, которое мы сможем найти по закону Ома.

А связать ЭДС с индукцией поля, стороной рамки и скоростью движения очень легко, воспользовавшись той формулой, которую мы получили в прошлой задаче.

Пройдёмся вдоль этой цепочки.

Запишем закон Ома $I = \frac$, подставив сюда формулу для ЭДС, которую мы получили в прошлой задаче, отбросив знак «минус» получим $I = \frac = \frac$отсюда выразим скорость, и, подставив все величины, получим $v = \frac = \frac A\cdot 10\text> \cdot 0,1 \text> = 1 \frac<\text>$

Ответ: 1

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *