Логические элементы
Какому логическому выражению соответствует предоставленная на рисунке схема?
Изображение:
Выберите один из 4 вариантов ответа:
1) F = A. 3) F = A V Ā.
2) F = A & Ā. 4) F = Ā.
Как называют логический элемент «НЕ»?
Выберите один из 4 вариантов ответа:
1) Инвертор. 3) Конъюнктор.
2) Аппликатор. 4) Дизъюнктор.
Какой логический элемент изображён на рисунке?
Изображение:
Выберите один из 4 вариантов ответа:
1) Инвертор. 3) Импликатор.
2) Дизъюнктор. 4) Конъюнктор.
Как называют логический элемент «ИЛИ»?
Выберите один из 4 вариантов ответа:
1) Буфер. 3) Дизъюнктор.
2) Инвертор. 4) Конъюнктор.
Какому логическому выражению соответствует предоставленная на рисунке схема?
Изображение:
Выберите один из 4 вариантов ответа:
Логический элемент – это .
Выберите один из 3 вариантов ответа:
1) дискретный преобразователь, который выдаёт после обработки двоичных сигналов значение одной из логических операций.
2) преобразователь, который выдаёт после обработки десятичных сигналов значение одной из логических операций.
3) дискретный преобразователь, который выдаёт после обработки двоичных сигналов значение всех логических операций.
Какой логический элемент изображён на рисунке?
Изображение:
Выберите один из 4 вариантов ответа:
1) Аппликатор. 3) Дизъюнктор.
2) Инвертор. 4) Конъюнктор.
Какой логический элемент изображён на рисунке?
Изображение:
Выберите один из 4 вариантов ответа:
1) Импровизатор. 3) Конъюнктор.
2) Дизъюнктор. 4) Инвертор.
Дискретная форма – это .
Выберите один из 3 вариантов ответа:
1) форма представления, при которой информация преподнесена в виде отдельных наборов фиксированных значений.
2) форма представления информации, которая объединяет два высказывания в одно новое, которое будет являться ложным тогда и только тогда, когда оба исходных высказывания истины.
3) форма представления, при которой информация преподнесена в виде фиксированного набора отдельных значений.
Как называют логический элемент «И»?
Выберите один из 4 вариантов ответа:
1) Дизъюнктор. 3) Импликатор.
2) Конъюнктор. 4) Инвертор.
1) (5 б.) Верные ответы: 4;
2) (3 б.) Верные ответы: 1;
3) (4 б.) Верные ответы: 4;
4) (3 б.) Верные ответы: 3;
5) (5 б.) Верные ответы: 4;
6) (5 б.) Верные ответы: 1;
7) (4 б.) Верные ответы: 3;
8) (4 б.) Верные ответы: 4;
9) (4 б.) Верные ответы: 3;
10) (3 б.) Верные ответы: 2;
-75%
Информатика 8 класс
1)Какому логическому выражению соответствует данная электронная схема?
2)Какой выходной сигнал будет на выходе логического элемента?
Голосование за лучший ответ
1) дизъюнктор
2) конъюнктор
3) инвертор
4) 1
5) &
6) -c ^ (a v b) (ответ: а)
7) конъюнктор
8) дизъюнктор
9) А
10) инвертор.
Тут ответы ко всем вопросам) тест прошла на 5^^
ФедоcПрофи (651) 4 месяца назад
Маргарита Шветова Ученик (197) Федос, всегда пожалуйста)))
Таблицы истинности и логические схемы
Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.
Основоположником алгебры логики является английский математик и логик Дж. Буль (1815–1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.
Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.
Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.
Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.
Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».
Кроме двузначной алгебры высказываний, в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.
В алгебре логики различаются простые (элементарные) высказывания, обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то». Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.
Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».
Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В.
Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.
Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.
Основные операции алгебры логики
1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А), которое называется отрицанием исходного высказывания, обозначается символически чертой сверху ($A↖$) или такими условными обозначениями, как ¬, ‘not’, и читается: «не А», «А ложно», «неверно, что А», «отрицание А». Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B ) истинно.
Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид
A | ¬A |
истина | ложь |
ложь | истина |
A | ¬A |
1 | 0 |
0 | 1 |
Высказывание $A↖$ ложно, когда А истинно, и истинно, когда А ложно.
Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.
2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В»), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В, а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.
Таблица истинности операции имеет вид
A | B | A ∧ B |
истина | ложь | ложь |
ложь | истина | ложь |
ложь | ложь | ложь |
истина | истина | истина |
A | B | A ∧ B |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
1 | 1 | 1 |
Высказывание А ∧ В истинно только тогда, когда оба высказывания — А и В истинны.
Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то А ∧ В есть пересечение множеств А и В.
3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В»), которая символически обозначается с помощью знака ∨ (А ∨ В) и читается: «А или В». Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B. Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.
Таблица истинности операции имеет вид
A | B | A ∨ B |
истина | ложь | истина |
ложь | истина | истина |
ложь | ложь | ложь |
истина | истина | истина |
A | B | A ∨ B |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
1 | 1 | 1 |
Высказывание А ∨ В ложно только тогда, когда оба высказывания — А и В ложны.
Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А ∨ В — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.
4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или», употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, А ⊕ В) и читается: «либо А, либо В». Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.
Таблица истинности операции имеет вид
А | В | А ⊕ B |
истина | ложь | истина |
ложь | истина | истина |
ложь | ложь | ложь |
истина | истина | ложь |
А | В | А ⊕ B |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
1 | 1 | 0 |
Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.
5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если. то» в сложное высказывание, которое символически обозначается с помощью знака → (А → В) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В». Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.
Таблица истинности операции имеет вид
А | В | А → В |
истина | ложь | ложь |
ложь | истина | истина |
ложь | ложь | истина |
истина | истина | истина |
А | В | А → В |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.
6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В, которое читается: «А эквивалентно B». Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно». Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».
Таблица истинности операции эквивалентности имеет вид
А | В | А ∼ В |
истина | ложь | ложь |
ложь | истина | ложь |
ложь | ложь | истина |
истина | истина | истина |
А | В | А ∼ В |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 1 | 1 |
Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.
Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.
Сложение по модулю два | А ⊕ В | $(A↖ ∧B) ∧ (A ∧ B↖)$ |
Импликация | А → В | $A↖ ∨ B$ |
Эквивалентность | А ∼ В | $(A↖ ∧ B↖) ∨ (A ∧ B)$ |
Приоритет выполнения логических операций следующий: отрицание («не») имеет самый высокий приоритет, затем выполняется конъюнкция («и»), после конъюнкции — дизъюнкция («или»).
С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А), то вторник всегда наступает после понедельника (В)» — импликация А → В, и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.
Рассмотрим, например, построение составного высказывания из высказываний А и В, которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.
Примеры решения задач
Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X < 3)) → (X < 4) :
1) X = 1; 2) X = 12; 3) X = 3.
Решение. Последовательность выполнения операций следующая: сначала выполняются операции сравнения в скобках, затем дизъюнкция, и последней выполняется операция импликации. Операция дизъюнкции ∨ ложна тогда и только тогда, когда оба операнда ложны. Таблица истинности для импликации имеет вид
A | B | A → B |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
Пример 2. Указать множество целых значений X, для которых истинно выражение ¬((X > 2) → (X > 5)) .
Решение. Операция отрицания применена ко всему выражению ((X > 2) → (X > 5)) , следовательно, когда выражение ¬((X > 2) → (X > 5)) истинно, выражение ((X > 2) →(X > 5)) ложно. Поэтому необходимо определить, для каких значений X выражение ((X > 2) → (X > 5)) ложно. Операция импликации принимает значение «ложь» только в одном случае: когда из истины следует ложь. А это выполняется только для X = 3; X = 4; X = 5.
Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.
Решение. Рассмотрим последовательно все предложенные слова:
1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;
2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;
3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;
4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;
5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.
Логические выражения и их преобразование
Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:
- выражения, которые используют операции сравнения («больше», «меньше», «равно», «не равно» и т. п.) и принимают логические значения (например, выражение а > b , где а = 5 и b = 7, равно значению «ложь»);
- непосредственные логические выражения, связанные с логическими величинами и логическими операциями (например, A ∨ В ∧ С, где А = истина, B = ложь и C = истина).
Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:
- вычисление существующих функциональных зависимостей;
- выполнение алгебраических операций (вначале умножение и деление, затем вычитание и сложение);
- выполнение операций сравнения (в произвольном порядке);
- выполнение логических операций (вначале операции отрицания, затем операции логического умножения, логического сложения, последними выполняются операции импликации и эквивалентности).
В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.
Пример. Найти значение выражения:
$1 ≤ a ∨ A ∨ sin(π/a — π/b) < 1 ∧ ¬B ∧ ¬(b^a + a^b >a + b ∨ A ∧ B)$ для а = 2, b = 3, A = истина, В = ложь.
Решение. Порядок подсчета значений:
1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;
2) A ∧ B = истина ∧ ложь = ложь.
Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;
3) 1≤ a = 1 ≤ 2 = истина;
После этих вычислений окончательно получим: истина ∨ А ∧ истина ∧ ¬В ∧ ¬истина.
Теперь должны быть выполнены операции отрицания, затем логического умножения и сложения:
5) ¬В = ¬ложь = истина; ¬истина = ложь;
6) A ∧ истина ∧ истина ∧ ложь = истина ∧ истина ∧ истина ∧ ложь = ложь;
7) истина ∨ ложь = истина.
Таким образом, результат логического выражения при заданных значениях— «истина».
Примечание. Учитывая, что исходное выражение есть, в конечном итоге, сумма двух слагаемых, и значение одного из них 1 ≤ a = 1 ≤ 2 = истина, без дальнейших вычислений можно сказать, что результат для всего выражения тоже «истина».
Тождественные преобразования логических выражений
В алгебре логики выполняются основные законы, позволяющие производить тождественные преобразования логических выражений.
Закон | Для ∨ | Для ∧ |
Переместительный | A ∨ B = B ∨ A | A ∧ B = B ∧ A |
Сочетательный | A ∨ (B ∨ C) = (B ∨ A) ∨ C | A ∧ (B ∧ C) = (A ∧ B) ∧ C |
Распределительный | A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) | A ∨ B ∧ C = (A ∨ B) ∧ (A ∨ C) |
Правила де Моргана | $↖$ = $A↖ ∧ B↖$ | $↖$ = $A↖ ∨ B↖$ |
Идемпотенции | A ∨ A = A | A ∧ A = A |
Поглощения | A ∨ A ∧ B = A | A ∧ (A ∨ B) = A |
Склеивания | (A ∧ B) ∨ (A↖ ∧ B) = B | (A ∨ B) ∧ (A↖ ∨ B) = B |
Операция переменной с ее инверсией | $A ∨ A↖$ = 1 | $A ∧ A↖$ = 0 |
Операция с константами | A ∨ 0 = A A ∨ 1 = 1 |
A ∧ 1 = A A ∧ 0 = 0 |
Двойного отрицания | $A↖$ = A |
Доказательства этих утверждений производят на основании построения таблиц истинности для соответствующих записей.
Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определенному виду путем использования основных законов алгебры логики. Под упрощением формулы, не содержащей операций импликации и эквивалентности, понимают равносильное преобразование, приводящее к формуле, которая содержит либо меньшее по сравнению с исходной число операций, либо меньшее число переменных.
Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т. п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).
Рассмотрим на примерах некоторые приемы и способы, применяемые при упрощении логических формул:
1) X1 ∧ X2 ∨ X1 ∧ X2 ∪ ¬X1 ∧ X2 = X1 ∧ X2 ∨ ¬X1 ∧ X2 = (X1 ∨ ¬X1) ∧ X2 = 1 ∧ X2 = X2 .
Для преобразования здесь можно применить закон идемпотенции, распределительный закон; операцию переменной с инверсией и операцию с константой.
2) X1 ∨ X1 ∧ X2 = X1 ∨ (1 ∨ 1 ∧ X2) = X1 ∨ (1 ∨ X2) = X1 .
Здесь для упрощения применяется закон поглощения.
3) ¬(X1 ∧ X2) ∨ X2 = (¬X1 ∨ ¬X2) ∨ X2 = ¬X1 ∨ ¬X2 ∨ X2 = ¬X1 ∨ 1 = 1 .
При преобразовании применяются правило де Моргана, операция переменной с ее инверсией, операция с константой
Примеры решения задач
Пример 1. Найти логическое выражение, равносильное выражению A ∧ ¬(¬B ∨ C) .
Решение. Применяем правило де Моргана для В и С: ¬(¬B ∨ C) = B ∧ ¬C .
Получаем выражение, равносильное исходному: A ∧ ¬(¬B ∨ C) = A ∧ B ∧ ¬C .
Ответ: A ∧ B ∧ ¬C.
Пример 2. Указать значение логических переменных А, В, С, для которых значение логического выражения (A ∨ B) → (B ∨ ¬C ∨ B) ложно.
Решение. Операция импликации ложна только в случае, когд а из истинной посылки следует ложь. Следовательно, для заданного выражения посылка A ∨ B должна принимать значение «истина», а следствие, т. е. выражение B ∨ ¬C ∨ B , — «ложь».
1) A ∨ B — результат дизъюнкции — «истина», если хотя бы один из операндов — «истина»;
2) B ∨ ¬C ∨ B — выражение ложно, если все слагаемые имеют значение «ложь», т. е. В — «ложь»; ¬C — «ложь», а следовательно, переменная С имеет значение «истина»;
3) если рассмотреть посылку и учесть, что В — «ложь», то получим, что значение А — «истина».
Ответ: А — истина, В — ложь, С — истина.
Пример 3. Каково наибольшее целое число X, при котором истинно высказывание (35
- ООО «Экзамер», 2024
- Написать нам
- Юридические документы
Логические схемы и таблицы истинности
Логические схемы создаются для реализации в цифровых устройствах булевых функций (функций алгебры логики).
В цифровой схемотехнике цифровой сигнал — это сигнал, который может принимать два значения, рассматриваемые как логическая «1» и логический «0».
Логические схемы могут содержать до 100 миллионов входов и такие гигантские схемы существуют. Представьте себе, что булева функция (уравнение) такой схемы была потеряна. Как восстановить её с наименьшими потерями времени и без ошибок? Наиболее продуктивный способ — разбить схему на ярусы. При таком способе записывается выходная функция каждого элемента в предыдущем ярусе и подставляется на соответствующий вход на следующем ярусе. Этот способ анализа логических схем со всеми нюансами мы сегодня и рассмотрим.
Логические схемы реализуются на логических элементах: «НЕ», «И», «ИЛИ», «И-НЕ», «ИЛИ-НЕ», «Исключающее ИЛИ» и «Эквивалентность». Первые три логических элемента позволяют реализовать любую, сколь угодно сложную логическую функцию в булевом базисе. Мы будем решать задачи на логические схемы, реализованные именно в булевом базисе.
Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах (для увеличения можно нажать на рисунок левой кнопкой мыши).
На этом уроке будем решать задачи на логические схемы, на которых логические элементы обозначены в стандарте ГОСТ.
Задачи на логические схемы бывают двух видов: задача синтеза логических схемы и задачи анализа логических схем. Мы начнём с задачи второго типа, так как в таком порядке удаётся быстрее научиться читать логические схемы.
Чаще всего в связи с построением логических схем рассматриваются функции алгебры логики:
- трёх переменных (будут рассмотрены в задачах анализа и в одной задаче синтеза);
- четырёх переменных (в задачах синтеза, то есть в двух последних параграфах).
Рассмотрим построение (синтез) логических схем
- в булевом базисе «И», «ИЛИ», «НЕ» (в предпоследнем параграфе);
- в также распространённых базисах «И-НЕ» и «ИЛИ-НЕ» (в последнем параграфе).
Логические схемы строятся на основе логических выражений и функций. Бывает, что изначально составленная функция является излишне сложной, из-за чего её схемная или программная реализация оказывается избыточной. Способам и приёмам минимизации логических функций посвящены отдельные материалы сайта — минимизация логических функций: общие сведения, минимизация логических функций: метод непосредственных преобразований и минимизация логических функций: метод Квайна.
Задача анализа логических схем
Задача анализа заключается в определении функции f , реализуемой заданной логической схемой. При решении такой задачи удобно придерживаться следующей последовательности действий.
- Логическая схема разбивается на ярусы. Ярусам присваиваются последовательные номера.
- Выводы каждого логического элемента обозначаются названием искомой функции, снабжённым цифровым индексом, где первая цифра — номер яруса, а остальные цифры — порядковый номер элемента в ярусе.
- Для каждого элемента записывается аналитическое выражение, связывающее его выходную функцию с входными переменными. Выражение определяется логической функцией, реализуемой данным логическим элементом.
- Производится подстановка одних выходных функций через другие, пока не получится булева функция, выраженная через входные переменные.
Пример 1. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.
Решение. Разбиваем логическую схему на ярусы, что уже показано на рисунке. Запишем все функции, начиная с 1-го яруса:
Теперь запишем все функции, подставляя входные переменные x, y, z :
В итоге получим функцию, которую реализует на выходе логическая схема:
Таблица истинности для данной логической схемы:
x | y | z | f | ||||
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
- Пригодится: минимизация логических функций — общие сведения
- Пригодится: минимизация логических функций методом непосредственных преобразований
- Пригодится: минимизация логических функций методом Квайна
Найти булеву функцию логической схемы самостоятельно, а затем посмотреть решение
Пример 2. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.
Пример 3. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.
Продолжаем искать булеву функцию логической схемы вместе
Пример 4. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.
Решение. Разбиваем логическую схему на ярусы. Запишем все функции, начиная с 1-го яруса:
Теперь запишем все функции, подставляя входные переменные x, y, z :
В итоге получим функцию, которую реализует на выходе логическая схема:
Таблица истинности для данной логической схемы:
x | y | z | f | ||
1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 1 | 1 |
- Пригодится: минимизация логических функций — общие сведения
- Пригодится: минимизация логических функций методом непосредственных преобразований
- Пригодится: минимизация логических функций методом Квайна
Пример 5. Найдите булеву функцию логической схемы и составьте таблицу истинности для логической схемы.
Решение. Разбиваем логическую схему на ярусы. Структура данной логической схемы, в отличие от предыдущих примеров, имеет 5 ярусов, а не 4. Но одна входная переменная — самая нижняя — пробегает все ярусы и напрямую входит в логический элемент в первом ярусе. Запишем все функции, начиная с 1-го яруса:
Теперь запишем все функции, подставляя входные переменные x, y, z :
В итоге получим функцию, которую реализует на выходе логическая схема:
Таблица истинности для данной логической схемы:
x | y | z | f | ||
1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
- Пригодится: минимизация логических функций — общие сведения
- Пригодится: минимизация логических функций методом непосредственных преобразований
Задача синтеза логических схем в булевом базисе
Разработка логической схемы по её аналитическому описанию имеет название задачи синтеза логической схемы.
Каждой дизъюнкции (логической сумме) соответствует элемент «ИЛИ», число входов которого определяется количеством переменных в дизъюнкции. Каждой конъюнкции (логическому произведению) соответствует элемент «И», число входов которого определяется количеством переменных в конъюнкции. Каждому отрицанию (инверсии) соответствует элемент «НЕ».
Часто разработка логической схемы начинается с определения логической функции, которую должна реализовать логическая схемы. В этом случае дана только таблица истинности логической схемы. Мы разберём именно такой пример, то есть, решим задачу, полностью обратную рассмотренной выше задаче анализа логических схем.
Пример 6. Построить логическую схему, реализующую функцию с данной таблицей истинности:
x | y | f |
1 | 1 | 0 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 0 |
Решение. Разбираем таблицу истинности для логической схемы. Определяем функцию, которая получится на выходе схемы и промежуточные функции, которые на входе принимают аргументы x и y . В первой строке результатом реализации выходной функции при том, что значения входных переменных равны единицам, должен быть логический «0», во второй строке — при разных значениях входных переменных на выходе тоже должен быть логический «0». Поэтому нужно, чтобы выходная функция была конъюнкцией (логическим произведением).
Теперь подбираем промежуточные функции. Получаем следующую таблицу для промежуточных функций и выходной функции — конъюнкции промежуточных функций:
0 | 0 | 0 |
0 | 1 | 0 |
1 | 1 | 1 |
0 | 1 | 0 |
Для построения логической схемы необходимо элементы, реализующие логические операции, указанные в выходной функции, располагать в порядке, заданной этой функцией. Из выражения видно, что понадобятся 3 схемы «НЕ», две двухвходовых схемы «И» и одна двухвходовая схема «ИЛИ». В соответствии с выходной функцией получаем следующую логическую схему:
А теперь очередь дошла до функций алгебры логики четырёх переменных. Сначала выполним синтез логической схемы в булевом базисе.
Пример 7. Построить в булевом базисе логическую схему, реализующую функцию алгебры логики
Решение. Для построения логической схемы потребуются 4 схемы «НЕ», одна трёхвходовая схема «И», 2 двухвходовые схемы «И» и одна трёхвходовая схема «ИЛИ». В соответствии с этим получаем следующую логическую схему:
- Пригодится: минимизация логических функций — общие сведения
- Пригодится: минимизация логических функций методом непосредственных преобразований
Задача синтеза логических схем в базисах «И-НЕ» и «ИЛИ-НЕ»
Часто для сокращения числа микросхем используют элементы «И-НЕ» или/и «ИЛИ-НЕ». Рассмтрим примеры, как построить схему, реализующую ту же функцию, что в предыдущем примере, но, сначала в базисе «И-НЕ», а затем в базисе «ИЛИ-НЕ».
Пример 8. Построить в базисе «И-НЕ» логическую схему, реализующую функцию алгебры логики .
Решение. Логическая функция должна быть приведена к виду, содержащему только операции логического умножения (конъюнкции) и инвертирования (отрицания). Это делается при помощи двойного инвертирования исходного выражения функции и применения закона де Моргана:
Для построения логической схемы потребуются 8 схем «И-НЕ». Получаем следующую логическую схему:
Пример 9. Построить в базисе «ИЛИ-НЕ» логическую схему, реализующую функцию алгебры логики .
- Пригодится: минимизация логических функций — общие сведения
- Пригодится: минимизация логических функций методом непосредственных преобразований
- Пригодится: минимизация логических функций методом Квайна