Разность электрических потенциалов в начале и в конце участка цепи называется
Перейти к содержимому

Разность электрических потенциалов в начале и в конце участка цепи называется

  • автор:

ЭДС, разность потенциалов и напряжение — что это и в чем разница

В материалах по электротехнике и электронике часто можно встретить три физические величины, имеющие одну и ту же единицу измерения — Вольт: разность электрических потенциалов, электрическое напряжение и ЭДС — электродвижущая сила.

Чтобы раз и навсегда избавиться от путаницы в терминах, давайте разберемся, в чем же заключаются различия между этими тремя понятиями. Для этого подробно рассмотрим каждое из них по отдельности.

ЭДС, разность потенциалов и напряжение - что это и в чем разница

Разность электрических потенциалов

На сегодняшний день физикам известно, что источниками электрических полей являются электрические заряды или изменяющиеся магнитные поля. Когда же мы рассматриваем определенные точки А и В в электростатическом поле известной напряженности E, то можем тут же говорить и о разности электростатических потенциалов между двумя данными точками в текущий момент времени.

Эта разность потенциалов находится как интеграл электрической напряженности между точками А и В, расположенными в данном электрическом поле на определенном расстоянии друг от друга:

Разность электрических потенциалов

Практически такая характеристика как потенциал относится к одному электрическому заряду, который теоретически может быть неподвижно установлен в данную точку электростатического поля, и тогда величина электрического потенциала для этого заряда q будет равна отношению потенциальной энергии W (взаимодействия данного заряда с данным полем) к величине этого заряда:

Величина электрического потенциала

Отсюда следует, что разность потенциалов оказывается численно равна отношению работы A (работа по сути — изменение потенциальной энергии заряда), совершаемой данным электростатическим полем при переносе рассматриваемого заряда q из точки поля 1 в точку поля 2, к величине данного пробного заряда q:

Разность потенциалов

В этом и заключается практический смысл термина «разность потенциалов», применительно к электротехнике, электронике, и вообще — к электрическим явлениям.

И если мы говорим о какой-нибудь электрической цепи, то можем судить и о разности потенциалов между двумя точками такой цепи, если в ней в данный момент действует электростатическое поле, причем как раз потому, что рассматриваемые точки цепи будут находится одновременно и в электростатическом поле определенной напряженности.

Как было сказано выше, разность электрических потенциалов измеряется в вольтах (1 вольт = 1 Дж/1Кл).

Вольтметр постоянного тока

Электростатическое поле — электрическое поле, создаваемое неподвижными электрическими зарядами. Для того, чтобы электрические заряды были неподвижны, на них не должны действовать силы в тех местах, где эти заряды могли бы двигаться. Но внутри проводников заряды могут свободно двигаться, поэтому при наличии электрического поля внутри проводников в них возникло бы движение зарядов (электрический ток).

Следовательно, заряды могут оставаться неподвижными только в том случае, если они создают такое поле, которое везде внутри проводников равно нулю, а на поверхности проводников направлено перпендикулярно к поверхности (т. к. иначе заряды двигались бы вдоль поверхности).

Для этого неподвижные заряды должны располагаться только по поверхности проводников и при том именно таким образом, чтобы электрическое поле внутри проводников было равно нулю, а на поверхности перпендикулярно к ней.

Все сказанное относится к случаю неподвижных зарядов. В случае движения зарядов, т. е. наличия токов в проводниках, в них должно существовать электрическое поле (т. к. иначе не могли бы течь токи) и, следовательно, движущиеся заряды располагаются в проводниках, вообще говоря, не так, как неподвижные, и создают электрические поля, отличные по своей конфигурации от электростатического поля. Но по своим свойствам электростатическое поле ничем не отличается от электрического поля движущихся зарядов.

Электрическое напряжение U

Теперь рассмотрим такое понятие как электрическое напряжение U между точками А и В в электрическом поле или в электрической цепи. Электрическим напряжением называется скалярная физическая величина, численно равная работе эффективного электрического поля (включая и сторонние поля!), совершаемой при переносе единичного электрического заряда из точки А в точку В.

Электрическое напряжение измеряется в вольтах, как и разность электрических потенциалов. В случае с напряжением принято считать, что перенос заряда не изменит распределения зарядов, являющихся источниками эффективного электростатического поля. И напряжение в этом случае будет складываться из работы электрических сил и работы сторонних сил.

Если сторонние силы отсутствуют, то работу совершит лишь потенциальное электрическое поле, и в этом случае электрическое напряжение между точками А и В цепи будет численно в точности равно разности потенциалов между данными точками, то есть отношению работы по переносу заряда из точки А в точку В к величине заряда q:

Разность потенциалов между точками А и B

Однако в общем случае напряжение между точками A и B отличается от разности потенциалов между этими точками на работу сторонних сил по перемещению единичного положительного заряда:

Напряжение между точками A и B

Эту работу сторонних сил как раз и называют электродвижущей силой на данном участке цепи, сокращенно — ЭДС:

ЭДС

Электродвижущая сила — ЭДС

Электродвижущая сила — ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах.

ЭДС гальванического элемента

ЭДС является скалярной физической величиной, характеризующей работу непосредственно действующих сторонних сил (любых сил за исключением электростатических) в цепях постоянного или переменного тока. В частности, в замкнутой проводящей цепи ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Здесь при необходимости вводят в рассмотрение электрическую напряженность сторонних сил Еex, являющуюся векторной физической величиной, равной отношению величины действующей на пробный электрический заряд сторонней силы к величине данного заряда. Тогда в замкнутом контуре L ЭДС будет равна:

Электродвижущая сила — ЭДС

Можно говорить об электродвижущей силе на любом участке электрической цепи. Это будет, по сути, удельная работа сторонних сил лишь на рассматриваемом ее участке. ЭДС гальванического элемента, к примеру, есть ни что иное, как работа сторонних сил при перемещении единичного положительного заряда только внутри этого гальванического элемента, а именно — от одного его полюса к другому.

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит (!) от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока за пределами данного источника равна нулю.

ЭДС может быть получена различными способами, из которых можно назвать следующие:

  • при помощи источников ЭДС, использующих химические процессы (гальванические элементы, аккумуляторы — химические источники тока);
  • при помощи источников ЭДС, в которых используются свойства магнитного поля (электрические машины — генераторы);
  • при помощи источников ЭДС, в которых тепловая энергия преобразуется в электрическую (термоэлектрические преобразователи);
  • при помощи источников ЭДС, преобразующих энергию светового излучения в электрическую (фотоприемники, солнечные батареи).
  • Что такое электрическое сопротивление и как оно зависит от температуры
  • Что такое индуктивная и емкостная нагрузка
  • Трёхфазная система электроснабжения

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » В помощь начинающим электрикам

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Поделитесь этой статьей с друзьями:

Про разность потенциалов, электродвижущую силу и напряжение

Про разность потенциалов, электродвижущую силу и напряжение

Известно, что одно тело можно нагреть больше, а другое меньше. Степень нагрева тела называется его температурой. Подобно этому, одно тело можно наэлектризовать больше другого. Степень электризации тела характеризует величину, называемую электрическим потенциалом или просто потенциалом тела.

Что значит наэлектризовать тело? Это значит сообщить ему электрический заряд , т. е. прибавить к нему некоторое количество электронов, если мы тело заряжаем отрицательно, или отнять их от него, если мы тело заряжаем положительно. В том и другом случае тело будет обладать определенной степенью электризации, т. е. тем или иным потенциалом, причем тело, заряженное положительно, обладает положительным потенциалом, а тело, заряженное отрицательно, — отрицательным потенциалом.

Разность уровней электрических зарядов двух тел принято называть разностью электрических потенциалов или просто разностью потенциалов .

Следует иметь в виду, что если два одинаковых тела заряжены одноименными зарядами, но одно больше, чем другое, то между ними также будет существовать разность потенциалов.

Кроме того, разность потенциалов существует между двумя такими телами, одно из которых заряжено, а другое не имеет заряда. Так, например, если какое-либо тело, изолированное от земли, имеет некоторый потенциал, то разность потенциалов между ним и землей (потенциал которой принято считать равным нулю) численно равна потенциалу этого тела.

Итак, если два тела заряжены таким образом, что потенциалы их неодинаковы, между ними неизбежно существует разность потенциалов.

Всем известное явление электризации расчески при трении ее о волосы есть не что иное, как создание разности потенциалов между расческой и волосами человека.

Действительно, при трении расчески о волосы часть электронов переходит на расческу, заряжая ее отрицательно, волосы же, потеряв часть электронов, заряжаются в той же степени, что и расческа, но положительно. Созданная таким образом разность потенциалов может быть сведена к нулю прикосновением расчески к волосам. Этот обратный переход электронов легко обнаруживается на слух, если наэлектризованную расческу приблизить к уху. Характерное потрескивание будет свидетельствовать о происходящем разряде.

Говоря выше о разности потенциалов, мы имели в виду два заряженных тела, однако разность потенциалов можно получить и между различными частями (точками) одного и того же тела.

Так, например, рассмотрим, что произойдет в куске медной проволоки, если под действием какой-либо внешней силы нам удастся свободные электроны, находящиеся в проволоке, переместить к одному концу ее. Очевидно, на другом конце проволоки получится недостаток электронов, и тогда между концами проволоки возникнет разность потенциалов.

Стоит нам прекратить действие внешней силы, как электроны тотчас же, в силу притяжения разноименных зарядов, устремятся к концу проволоки, заряженному положительно, т. е. к месту, где их недостает, и в проволоке вновь наступит электрическое равновесие.

Электродвижущая сила и напряжение

Д ля поддержания электрического тока в проводнике необходим какой-то внешний источник энергии, который все время поддерживал бы разность потенциалов на концах этого проводника.

Такими источниками энергии служат так называемые источники электрического тока , обладающие определенной электродвижущей силой , которая создает и длительное время поддерживает разность потенциалов на концах проводника.

Электродвижущая сила (сокращенно ЭДС) обозначается буквой Е . Единицей измерения ЭДС служит вольт. У нас в стране вольт сокращенно обозначается буквой «В», а в международном обозначении — буквой «V».

Итак, чтобы получить непрерывное течение электрического тока, нужна электродвижущая сила, т. е. нужен источник электрического тока.

Первым таким источником тока был так называемый «вольтов столб», который состоял из ряда медных и цинковых кружков, проложенных кожей, смоченной в подкисленной воде. Таким образом, одним из способов получения электродвижущей силы является химическое взаимодействие некоторых веществ, в результате чего химическая энергия превращается в энергию электрическую. Источники тока, в которых таким путем создается электродвижущая сила, называются химическими источниками тока .

В настоящее время химические источники тока — гальванические элементы и аккумуляторы — широко применяются в электротехнике и электроэнергетике.

Другим основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы .

основным источником тока, получившим широкое распространение во всех областях электротехники и электроэнергетики, являются генераторы

Генераторы устанавливаются на электрических станциях и служат единственным источником тока для питания электроэнергией промышленных предприятий, электрического освещения городов, электрических железных дорог, трамвая, метро, троллейбусов и т. д.

Как у химических источников электрического тока (элементов и аккумуляторов), так и у генераторов действие электродвижущей силы совершенно одинаково. Оно заключается в том, что ЭДС создает на зажимах источника тока разность потенциалов и поддерживает ее длительное время.

Эти зажимы называются полюсами источника тока. Один полюс источника тока испытывает всегда недостаток электронов и, следовательно, обладает положительным зарядом, другой полюс испытывает избыток электронов и, следовательно, обладает отрицательным зарядом.

Соответственно этому один полюс источника тока называется положительным (+), другой — отрицательным (—).

Источники тока служат для питания электрическим током различных приборов — потребителей тока. Потребители тока при помощи проводников соединяются с полюсами источника тока, образуя замкнутую электрическую цепь. Разность потенциалов, которая устанавливается между полюсами источника тока при замкнутой электрической цепи, называется напряжением и обозначается буквой U.

Единицей измерения напряжения, так же как и ЭДС, служит вольт.

Если, например, надо записать, что напряжение источника тока равно 12 вольтам, то пишут: U — 12 В.

Для измерения ЭДС или напряжения применяется прибор, называемый вольтметром.

Чтобы измерить ЭДС или напряжение источника тока, надо вольтметр подключить непосредственно к его полюсам. При этом, если электрическая цепь разомкнута, то вольтметр покажет ЭДС источника тока. Если же замкнуть цепь, то вольтметр уже покажет не ЭДС, а напряжение на зажимах источника тока.

ЭДС, развиваемая источником тока, всегда больше напряжения на его зажимах.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Разность потенциалов

Из доказанного выше: Þ

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

1. Вектор напряженности направлен в сторону уменьшения потенциала.

2. Электрическое поле существует, если существует разность потенциалов.

3. Единица напряженности: — Напряженность поля равна

1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

46. Электрическое поле в диэлектриках и проводниках

электрическое поле может существовать не только в вакууме, но и внутри вещества, ибо электрические силы могут действовать и внутри различных тел. При этом, однако, надо иметь в виду существенное различие между проводниками и диэлектриками. В проводнике имеются электрические заряды, свободно перемещающиеся под действием электрических сил. В диэлектрике же движение зарядов под действием электрических сил происходить не может. Поэтому, если в проводнике возникло электрическое поле, то свободные заряды проводника придут в движение под действием этого поля, т. е. через проводник будет идти электрический ток. Равновесие будет достигнуто, когда заряды распределятся по проводнику таким образом, чтобы создаваемое ими внутри проводника электрическое поле как раз компенсировало внешнее поле, вызвавшее перемещение зарядов. Пока такая компенсация не наступила, электрические заряды, благодаря их подвижности в проводнике, будут продолжать движение. Таким образом, при равновесии зарядов напряженность электрического поля в проводнике равна нулю, т. е. электрическое поле в проводнике отсутствует. В диэлектрике наличие электрического поля не препятствует равновесию зарядов. Сила, действующая на заряды в диэлектрике со стороны электрического поля, уравновешивается внутримолекулярными силами, удерживающими заряды в пределах молекулы диэлектрика, так что в диэлектрике возможно равновесие зарядов, несмотря на наличие электрического поля. разделение тел на проводники и диэлектрики условно. При достаточно большой напряженности поля и в диэлектрике возможно заметное перемещение зарядов, ведущее к пробою диэлектрика. Однако при общепринятом разделении тел на проводники и диэлектрики мы можем сказать, что в случае равновесия зарядов электрическое поле внутри проводника (например, металла) отсутствует, а электрическое поле в диэлектрике (например, в стекле) может существовать.

47. Теорема Остроградского-Гаусса. Поток вектора напряженности электрического поля.

Чтобы продвинуться дальше в изучении электрического поля, необходимо использовать векторный анализ — математический аппарат. Мы должны знать, что такое градиент, ротор, дивиргенция. Начнем же с понятия » поток вектора » .

П усть имеем однородное электрическое поле (напряженность которого одинакова во всех точках пространства) с напряженностью , которое пронизывает некоторую плоскую поверхность площади S, тогда скаляр-

ное произведение будет называться потоком вектора напряженности через поверхность S, (см. рис. 1), т.е. , (1)

где — есть вектор, равный произведению величины площади на нормаль к этой поверхности, Еn -проекция вектора на нормаль, к площадке.

В общем случае поле может быть неоднородным, поверхность неплоской. В этом случае поверхность можно мысленно разбить на бесконечно малые элементарные площадки dS, которые можно считать плоскими, а поле вблизи них однородным. В таком случае поток через элементарную площадку . (2)

Полный поток вектора напряженности через поверхность S

. (3)

Н айдем поток вектора напряженности электрического поля, создаваемого точечным зарядом q, через сферическую поверхность радиуса r.

Площадь ее поверхности . Силовые линии электрического поля, (см. рис. 2), идут по радиусам к поверхности сферы и поэтому угол между векторами и равен нулю.

. (4)

Можно показать, что поток через замкнутую поверхность не зависит от формы поверхности и от расположения зарядов в ней.

Рассмотрим поток, создаваемый системой зарядов, сквозь замкнутую поверхность произвольной формы, внутри которой они находятся (рис.3): .

48. Применение теоремы Остроградского-Гаусса для определения напряженности электрического поля.

Применение теоремы Гаусса

Являясь (вкупе с уравнением о нулевой циркуляции электрического поля) основным полевым уравнением электростатики (вместе эти два уравнения в дифференциальной форме эквивалентны уравнению Пуассона — основному и единственному дифференциальному уравнению классической теории для электростатического потенциала.

В электродинамике теорема Гаусса (закон Гаусса) также остается (полностью в том же виде) одним из главных уравнений — одним из четырех уравнений Максвелла.

В некоторых ситуациях теорема Гаусса может быть использована для прямого и легкого вычисления электростатического поля непосредственно. Это ситуации, когда симметрия задачи позволяет наложить на напряженность электрического поля такие дополнительные условия, что вместе с теоремой Гаусса этого хватает для прямого элементарного вычисления (без применения двух обычных общих способов — решения уравнения в частных производных или лобового интегрирования кулоновских полей для элементарных точечных зарядов).

Именно таким способом с использованием теоремы Гаусса может быть выведен и сам закон Кулона (см. выше).

Конкретные примеры такого применения теоремы Гаусса разобраны здесь ниже.

В них используются следующие величины и обозначения:

  • Объёмная плотность заряда

где — (бесконечно малый) элемент объема,

  • Поверхностная плотность заряда

где — (бесконечно малый) элемент поверхности.

  • Линейная плотность заряда

где — длина бесконечно малого отрезка. (Первая используется для зарядов, непрерывно распределенных по объему, вторая — для распределенных по поверхности, третья — для распределенных по одномерной линии (кривой, прямой).

Расчет напряженности поля сферически симметричного распределения заряда

Способ расчета с помощью теоремы Гаусса для любого сферически симметричного распределения заряда в целом сводится к тому, что описано выше для случая точечного заряда (см. параграф о законе Кулона).

Отметим тут только в отношении неточечных источников обладающих сферической симметрией вот что (всё это является очевидными следствиями применения описанного там метода):

  1. Сферически симметричный заряд с концентрической сферической пустотой (или незаряженной областью) в середине, не создает внутри этой пустоты поля (напряженность поля там равна нулю).
  2. Вообще поле на расстоянии r от центра создается только теми зарядами, которые находятся глубже к центру. Это поле можно рассчитать по закону Кулона: , только под Q здесь следует понимать суммарный заряд шаровой области радиусом r (а это означает, что зависимость от r в итоге отличается от кулоновской, поскольку с ростом r растет Q, по карйней мере пока r не больше радиуса всей заряженной области — если только она в свою очередь конечна).
  3. При r, больших радиуса заряженной области (если он конечен), выполняется самый обычный закон Кулона (как для точечного заряда). Это объясняет, например, почему обычный закон Кулона работает для равномерно заряженных шаров, сфер, планет со структурой близкой к сферически симметричной даже вблизи их поверхности (например, почему вблизи поверхности Земли гравитационное поле достаточно близко к полю точечной массы, сосредоточенной в центре Земли).
  4. В интересном частном случае равномерно заряженного шара, его электрическое (или гравитационное) поле оказывается внутри шара пропорциональным расстоянию до центра. [21]

Расчёт напряжённости поля бесконечной плоскости

Рассмотрим поле, создаваемое бесконечной однородно заряженной плоскостью с везде одинаковой поверхностной плотностью заряда . Представим себе мысленно цилиндр с образующими, перпендикулярными к заряженной плоскости, и основаниями (площадью каждое), расположенными относительно плоскости симметрично (см. рисунок).

В силу симметрии:

  1. Все векторы напряжённости поля (в том числе и ) — перпендикулярны заряженной плоскости: действительно, в силу вращательной симметрии задачи, вектор напряжённости при любом повороте относительно оси, перпендикулярной плоскости, должен переходить в себя, а это возможно для ненулевого вектора только если он перпендикулярен плоскости. Из этого следует (кроме прочего), что поток напряжённости поля через боковую поверхность цилиндра равен нулю (так как поле направлено везде по касательной к этой поверхности).
  2. .

Поток вектора напряжённости равен (в силу (1)) потоку только через основания цилиндра, а он, в силу того, что и перпендикулярны этим основаниям и в силу (2), равен просто .

Применив теорему Гаусса, и учитывая , получим (в системе СИ):

  • В системе СГСЭ все рассуждения полностью аналогичны (с точностью до постоянных коэффициентов), а ответ записывается как

Расчёт напряжённости поля бесконечной нити

Рассмотрим поле, создаваемое бесконечной прямолинейной нитью с линейной плотностью заряда, равной . Пусть требуется определить напряжённость, создаваемую этим полем на расстоянии от нити. Возьмём в качестве гауссовой поверхности цилиндр с осью, совпадающей с нитью, радиусом и высотой . Тогда поток напряжённости через эту поверхность по теореме Гаусса таков (в единицах СИ):

В силу симметрии

  1. вектор напряженности поля направлен перпендикулярно нити, прямо от нее (или прямо к ней).
  2. модуль этого вектора в любой точке поверхности цилиндра одинаков.

Тогда поток напряжённости через эту поверхность можно рассчитать следующим образом:

Учитывается только площадь боковой поверхности цилиндра, так как поток через основания цилиндра равен нулю (вследствие направления E по касательной к ним). Приравнивая два полученных выражения для , имеем:

(В системе СГС ответ: ).

49. Электрическая емкость уединенного проводника. Конденсаторы. Емкость плоского конденсатора

Электроемкость уединенного проводника.

Электроемкость уединенного проводника — это физическая величина, численно равная заряду, необходимoму для повышения потенциала проводника на 1 В:

Найдем емкость проводника формой шара радиуса R:

Найдем размер шара емкостью 1Ф:

При этом емкость шара размером в земной равна:

Избыточный заряд величиной 1 Кл поднял бы потенциал такого шара на

Как видим, емкость проводника определена его «габаритами». Совершенно аналогично, «энергетическая емкость» бочки, т. е. величина, численно равная массе воды, необходимой для повышения ее потенциала в поле тяжести на единицу (в однородном поле тяжести на высоте h потенциал численно равен потенциальной энергии 1 кг: gh), прямопропорциональна площади дна бочки.

Диэлектрик в e раз ослабляет поле и, следовательно, в раз увеличивает емкость.

Электроемкость плоского конденсатора.

Так как знак потенциала точечного заряда совпадает со знаком самого заряда, то индуцирование в близлежащих телах зарядов противоположного знака приводит к уменьшению потенциала «индуцирующего» заряда, что, соответственно, означает увеличение электроемкости системы близлежащих тел, получившей название конденсатор.

Плоский конденсатор представляет из себя две плоские пластины, расстояние между которыми d мало по сравнению с их линейными размерами. Это предположение позволяет пренебречь малыми областями неоднородности электрического поля у краев пластин и считать, что все поле однородно и сосредоточено между пластинами. Заряд конденсатора Q — это заряд положительно заряженной пластины.

Емкость конденсатора определяется как величина, численно равная заряду, необходимому для изменения разности потенциалов пластин, напряжения U между обкладками, на 1 В:

Заполнение пространства между пластинами диэлектриком, очевидно, увеличит емкость в раз.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

50) Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости. Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними: Ф=Кл/В

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 4.6.3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = С2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует
Таким образом, при параллельном соединении электроемкости складываются.

Рисунок 4.6.3. Параллельное соединение конденсаторов. C = C1 + C2.

Рисунок 4.6.4. Последовательное соединение конденсаторов.

При последовательном соединении (рис. 4.6.4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны и Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,

При последовательном соединении конденсаторов складываются обратные величины емкостей. Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор. Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую (рис. 4.7.1). При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов при переносе каждой порции Δq внешние силы должны совершить работу Энергия We конденсатора емкости C, заряженного зарядом Q, может быть найдена путем интегрирования этого выражения в пределах от 0 до Q:

1

Рисунок 4.7.1. Процесс зарядки конденсатора.

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением Q = CU.

Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. Формулы для We аналогичны формулам для потенциальной энергии Ep деформированной пружины (см. § 2.4)

где k – жесткость пружины, x – деформация, F = kx – внешняя сила. По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля. Это легко проиллюстрировать на примере заряженного плоского конденсатора. Напряженность однородного поля в плоском конденсаторе равна E = U/d, а его емкость

где V = Sd – объем пространства между обкладками, занятый электрическим полем. Из этого соотношения следует, что физическая величина

является электрической (потенциальной) энергией единицы объема пространства, в котором создано электрическое поле. Ее называют объемной плотностью электрической энергии. Энергия поля, созданного любым распределением электрических зарядов в пространстве, может быть найдена путем интегрирования объемной плотности we по всему объему, в котором создано электрическое поле.

51) Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, не скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника равно нулю (см. § 4.5). Однако, в проводниках может при определенных условиях возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда.

Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле. Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δq, переносимого через поперечное сечение проводника (рис. 4.8.1) за интервал времени Δt, к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами. Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачки жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток. При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС): Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В). При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю. Цепь постоянного тока можно разбить на определенные участки. Те участки, на которых не действуют сторонние силы (то есть участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными. При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе 12, действующей на данном участке. Поэтому полная работа равна

U12 = φ1 – φ2 + 12.

Величину U12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

Электрический потенциал, разность электрических потенциалов, электрическое напряжение, электродвижущая сила

Электрическое напряжение между двумя точками электрической цепи или электрического поля, равно работе электрического поля по перемещению единичного положительного заряда из одной точки в другую. В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд; в этом случае Э. н. между двумя точками совпадает с разностью потенциалов между ними.

Если поле непотенциально, то напряжение зависит от того пути, по которому перемещается заряд между точками. Непотенциальные силы, называются сторонними, действуют внутри любого источника постоянного тока (генератора, аккумулятора, гальванического элемента и др.). Под напряжением на зажимах источника тока всегда понимают работу электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника; в этом случае Э. н. равно разности потенциалов на зажимах источника и определяется законом Ома: U = IR—E, где I — сила тока, R — внутреннее сопротивление источника, а E — его электродвижущая сила (эдс). При разомкнутой цепи (I = 0) напряжение по модулю равно эдс источника. Поэтому эдс источника часто определяют как Э. н. на его зажимах при разомкнутой цепи.

В случае переменного тока Э. н. обычно характеризуется действующим (эффективным) значением, которое представляет собой среднеквадратичное за период значение напряжения. Напряжение на зажимах источника переменного тока или катушки индуктивности измеряется работой электрического поля по перемещению единичного положительного заряда вдоль пути, лежащего вне источника или катушки. Вихревое (непотенциальное) электрическое поле на этом пути практически отсутствует, и напряжение равно разности потенциалов.

Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Наименование и обозначение производной единицы СИ:

международное – volt, V

русское – вольт, В

Выражение через основные и производные единицы СИ:

по материалам Российской Метрологической Энциклопедии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *