Зачем нужен момент сопротивления
Mbt = Wpl Rbt,ser — обычная формула сопромата, в которую только внесена поправка на неупругие деформации бетона растянутой зоны: Wpl — упруго-пластический момент сопротивления приведенного сечения. Его можно определить по формулам Норм или из выражения Wpl = gWred, где Wred — упругий момент сопротивления приведенного сечения для крайнего растянутого волокна (в нашем случае — нижнего), g = (1,25. 2,0) — зависит от формы сечения и определяется по таблицам справочников. Rbt,ser — расчетное сопротивление бетона растяжению для предельных состояний 2-й группы (численно равное нормативному Rbt, n).
153. Почему неупругие свойства бетона увеличивают момент сопротивления сечения?
Рассмотрим простейшее прямоугольное бетонное (без арматуры) сечение и обратимся к рис.75,в, на котором показана расчетная эпюра напряжений накануне образования трещин: прямоугольная в растянутой и треугольная в сжатой зоне сечения. По условию статики равнодействующие усилий в сжатой Nb и в растянутойNbt зонах равны между собой, значит равны и соответствующие площади эпюр, а это возможно, если напряжения в крайнем сжатом волокне вдвое больше растягивающих: sb= 2Rbt,ser. Равнодействующие усилий в сжатой и растянутой зонах Nb = =Nbt = Rbt,ser bh /2, плечо между ними z = h /4 + h /3 = 7h /12. Тогда момент, воспринимаемый сечением, равен M = Nbtz =(Rbt,serbh/2)(7h/12)= =Rbt,serbh27/24 = Rbt,ser(7/4)bh2/6, или M = Rbt,ser1,75 W. То есть, для прямоугольного сечения g = 1,75. Таким образом, момент сопротивления сечения возрастает благодаря принятой в расчете прямоугольной эпюре напряжений в растянутой зоне, вызванной неупругими деформациями бетона.
154. Как рассчитывают нормальные сечения по образованию трещин при внецентренном сжатии и растяжении?
Принцип расчета тот же, что и при изгибе. Нужно только помнить, что моменты продольных сил N от внешней нагрузки принимают относительно ядровых точек (рис. 76, б, в):
при внецентренном сжатии Мr = N(eo — r), при внецентренном растяжении Мr = N(eo + r). Тогда условие трещиностойкости принимает вид: Mr ≤ Mcrc = Mrp + Mbt — то же, что и при изгибе. (Вариант центрального растяжения рассмотрен в вопросе 50.) Напомним, что отличительной особенностью ядровой точки является то, что приложенная в ней продольная сила вызывает на противоположной грани сечения нулевые напряжения (рис. 78).
155. Может ли трещиностойкость железобетонного изгибаемого элемента быть выше его прочности?
В практике проектирования действительно встречаются случаи, когда по расчету Mcrc > Mu. Чаще всего подобное происходит в преднапряженных конструкциях с центральным армированием (сваях, дорожных бортовых камнях и т.п.), которым арматура требуется только на период перевозки и монтажа и у которых она расположена по оси сечения, т.е. вблизи нейтральной оси. Объясняется это явление следующими причинами.
В момент образования трещины растягивающее усилие в бетоне передается арматуре при соблюдении условия: Mcrc= Nbt z1 = Ns z2 (рис. 77) – для простоты рассуждений работа арматуры до образования трещины здесь не учтена. Если окажется, что Ns = Rs As ≤ Nbt z1 / z2, то одновременно с образованием трещин происходит и разрушение элемента, что подтверждается многочисленными экспериментами. Для некоторых конструкций такая ситуация может оказаться чреватой внезапным обрушением, поэтому Нормы проектирования в этих случаях предписывают увеличить на 15 % площадь сечения арматуры, если она подобрана расчетом по прочности. (Кстати, именно подобные сечения в Нормах именуются «слабо армированными», что вносит некоторую путаницу в давно устоявшуюся научно-техническую терминологию.)
156. В чем особенность расчета нормальных сечений по образованию трещин в стадии обжатия, транспортировки и монтажа?
Все зависит от того, трещиностойкость какой грани проверяют и какие при этом действуют усилия. Например, если при перевозке балки или плиты подкладки находятся на значительном расстоянии от торцов изделия, то в опорных сечениях действует отрицательный изгибающий момент Мw от собственного веса qw (с учетом коэффициента динамичности kД =1,6 — см. вопрос 82). Сила обжатия Р1 (с учетом первых потерь и коэффициента точности натяжения gsp >1) создает момент того же знака, поэтому ее рассматривают как внешнюю силу, которая растягивает верхнюю грань (рис.79), и при этом ориентируются на нижнюю ядровую точку r´. Тогда условие трещиностойкости имеет вид:
Мw + P1(eop — r´ )≤ Rbt,ser W´pl, где W´pl — упруго-пластический момент сопротивления для верхней грани. Заметим еще, что величина Rbt,ser должна соответствовать передаточной прочности бетона.
157. Влияет ли наличие начальных трещин в зоне, сжатой от внешней нагрузки, на трещиностойкость растянутой зоны?
Влияет, причем отрицательно. Начальные трещины, образовавшиеся в стадии обжатия, перевозки или монтажа под воздействием момента от собственного веса Mw, уменьшают размеры поперечного сечения бетона (заштрихованная часть на рис. 80), т.е. уменьшают площадь, момент инерции и момент сопротивления приведенного сечения. За этим следует увеличение напряжений обжатия бетона sbp, увеличение деформаций ползучести бетона, рост потерь напряжений в арматуре от ползучести, уменьшение силы обжатия Р и снижение трещиностойкости той зоны, которая будет растянута от внешней (эксплуатационной) нагрузки.
Для кого выпускается наша продукция и меры ее эксплуатации.
Полярный момент сопротивления (или момент сопротивления при кручении)
Полярный момент сопротивления (или момент сопротивления при кручении), является геометрической характеристикой поперечного сечения вала, определяющей способность вала сопротивляться кручению. Полярный момент сопротивления измеряется в единицах длины в кубе (в см3).
Для стержня круглого поперечного сечения полярный момент сопротивления определяется формулой:
.
Для полого вала, имеющего внутренний диаметр d и внешний – D, полярный момент сопротивления выражается формулой:
, где .
Полярный момент сопротивленияПолярный момент сопротивления (или момент сопротивления при кручении)
Момент инерции и момент сопротивления
При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для рассматриваемого поперечного сечения конструкции. Что такое момент сопротивления и как он связан с моментом инерции изложено отдельно. Кроме того, для сжимаемых конструкций также нужно знать значение радиуса инерции. Определить момент сопротивления и момент инерции, а иногда и радиус инерции для большинства поперечных сечений простой геометрической формы можно по давно известным формулам:
Таблица 1. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм.
Обычно, этих формул достаточно для большинства расчетов, но случаи бывают всякие и сечение конструкции может быть не такой простой геометрической формы или положение осей, относительно которых нужно определить момент инерции или момент сопротивления, может быть не таким, тогда можно воспользоваться следующими формулами:
Таблица 2. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций более сложных геометрических форм
Как видно из таблицы 2, высчитывать момент инерции и момент сопротивления для неравнополочных уголков достаточно сложно, да нет в этом необходимости. Для неравнополочных и равнополочных прокатных уголков, а также для швеллеров, двутавров и профильных труб есть сортаменты. В сортаментах значения момента инерции и момента сопротивления приводятся для каждого профиля.
Таблица 3. Изменения моментов инерции и моментов сопротивления в зависимости от положения осей.
Формулы из таблицы 3 могут понадобиться для расчета наклонных элементов кровли.
На этом пока все.
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
05-12-2012: Адольф Сталин
Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно
05-12-2012: Доктор Лом
В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье «Основы сопромата, расчетные формулы», здесь лишь повторюсь: «W — это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы». Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено). Со временем напишу отдельную статью.
05-12-2012: Гиви
В принципе все предельно ясно, но здесь проще www.kataltim.ru
20-04-2013: Petr
Не нужно полностью доверять поданной в сайтах информации. Её никто по-хорошему не проверяет. И ссылки на неё не даются. Так в Таблице 1. «Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм» для тонкостенной трубы дается определение, что отношение диаметра к толщине оболочки должно быть больше 10. По другим источникам — должно быть больше 20. (Н.М. Беляев. Сопротивление материалов. М.1996. стр.160. или Н.И.Безухов. Основы теории упругости, пластичности и ползучести.М.1961.стр.390)
21-04-2013: Доктор Лом
Верно. Доверять нельзя. Но логическое мышление пока никто не отменял. Самый правильный вариант — рассчитывать момент инерции или момент сопротивления для любой трубы по формулам, приведенным для обычной трубы (на 1 пункт выше). Формулы, приводимые для тонкостенной трубы, в любом случае будут приближенными и годятся только для первичного расчета и об этом забывать нельзя.
Впрочем параметры максимально допустимой толщины стенки исправил.
25-06-2013: Саня
требуется определить момент инерции для сложного нестандартного сечения. сечение: прямоугольник с двумя пазами. внешне похоже на букву «Ш». не получается найти какую либо информацию. буду признателен за какую нибудь информацию
25-06-2013: Доктор Лом
Посмотрите статью «Расчет прочности потолочного профиля для гипсокартона» (https://doctorlom.com/item249.html)
там в частности определяется момент инерции тоже не совсем простого сечения.
03-11-2014: Радик
Вот здесь http://otvet.mail.ru/question/33111076
дана другая формула для момента сопротивления трубы, а именно: W=(D^3-d^3)*3,14/32.
Объясните, пожалуйста, правильность этой формулы (или неправильность).
04-11-2014: Доктор Лом
Формула из приведенного вами источника неправильная (ею можно пользоваться только для приблизительных вычислений) и проверить это легко.
Чтобы определить момент инерции сечения трубы, достаточно вычесть из момента инерции стержня круглого сечения (тут при вычислениях используется наружный диаметр трубы) момент инерции отверстия (внутренний диаметр, ведь внутри трубы никакого материала нет, на то она и труба). После простейших математических преобразований мы получим формулу момента инерции трубы, приведенную в таблице.
А для того, чтобы определить момент сопротивления, нужно момент инерции разделить на максимальное расстояние от центра тяжести до самой дальней точки сечения, соответственно на D/2, или умножить на 2/D.
В итоге получить указанную вами формулу невозможно и чем толще будет стенка трубы, тем больше будет погрешность при использовании этой формулы.
04-11-2014: Радик
11-11-2014: Ильгам
Не смог найти инфо о том в каких единицах (мм, см, м) все значения в формулах.
Попробовал посчитать Wz для уголка 210х90мм (если у швел.24П срезать верхнюю полку), получилось 667,5 см3, при условии что все значения в см.
Для примера, у швел.24П (до срезания полки) Wx(Wz)=243 см3.
11-11-2014: Доктор Лом
Это общие формулы. В каких единицах подставите значения, в таких и получите результат, только само собой уже в кубических. Но если начали подставлять, например, в сантиметрах, то так и нужно продолжать.
У швеллера без полки момент сопротивления по умолчанию не может быть больше чем у целого швеллера. Для приблизительного определения момента сопротивления швеллера без полки вы можете воспользоваться формулами для неравнополочного уголка (только для определения Wz, для Wy эти формулы не подойдут).
04-01-2015: Valerij
Если сечение трубы ослаблено несколькими значительными отверстиями, как учесть это при расчёте момента инерции и момента сопротивления? Труба 32.39см и в ней 9 отв. диам.2.8см в сечении(шаг отвермтий 10см. по длине трубы).
05-01-2015: Доктор Лом
Для определения момента инерции вам нужно вычесть из момента инерции трубы момент инерции вашего отверстия. Для этого нужно определить площадь сечения отверстия и затем умножить ее на квадрат расстояния до центра трубы плюс собственный момент инерции отверстия. Больше подробностей в статье «Моменты инерции поперечных сечений».
Если расчет не требует особой точности и диаметр отверстия в 5 и более раз меньше диаметра трубы (вроде ваш случай, если 32.39 — это наружный диаметр), то сегмент отверстия можно привести к прямоугольнику. Если отверстие не сквозное, то следует дополнительно определить положение центра тяжести трубы с отверстием для того, чтобы потом вычислить новое значение момента сопротивления.
Но и это еще не все. Вам следует учесть, что возле отверстий возникают значительные локальные напряжения.
09-10-2015: Борис
Неравноплечий уголок.При вычислении Wy не y,а H-y
09-10-2015: Доктор Лом
Не пойму, о чем вы. Определение момента сопротивления относительно оси у в таблицах вообще не приводится.
09-10-2015: Борс
Для треугольников при вычислении Wzп h в квадрате.
09-10-2015: Борис
09-10-2015: Доктор Лом
Все верно. Теперь понял, о чем вы. Более корректно было бы указать момент сопротивления для верхней и для нижней части сечения, а я указал только для нижней. Ну а при определении момента сопротивления треугольников банально пропущен квадрат.
Исправил. Спасибо за внимательность.
28-04-2016: Jama
Здравствуете! Кто может помочь о правильности расчета http://ej.kubagro.ru/2011/02/pdf/19.pdf
я не могу понят откуда значение берется момент сопротивления. Помогите пожалуйста!
28-04-2016: Доктор Лом
Что именно вам не понятно (вычитывать весь документ у меня нет времени). Если речь о балке, лежащей на упругом основании, то скорее всего балка эта имеет прямоугольное сечение (см. таблицу 1).
29-08-2016: Максим
Здравствуйте ! Имеется швеллер № 12. В верхний пояс будут вкручиваться саморезы и винты для крепления кровли. Как учесть ослабление швеллера, т.е как определить W ослабленного сечения.
29-08-2016: Доктор Лом
Если максимально упростить, то:
Сначала определяете момент инерции отверстия (для упрощения расчетов его можно принимать прямоугольным). Затем из момента инерции швеллера вычитаете момент инерции отверстия, затем делите полученный момент инерции на половину высоты швеллера и получаете момент сопротивления.
21-03-2017: игорь
здравствуйте,Сергей. я прочитал некоторые ваши статьи,очень интересно и понятно(в основном).я хотел бы рассчитать балку двутаврового сечения,но не могу найти Ix и Wx. дело в том что она не стандартная,я её буду делать сам,из дерева.можете ли вы мне помочь? я оплачу.только я не смогу оплатить электронными средствами т.к. не знаю как этим пользоваться.
21-03-2017: Доктор Лом
Игорь, я отправил вам письмо.
30-08-2017: Али
Уважаемый доктор, желаю вам всего найлучшего. Помогите пожалуйста, какими формулами нужны для подбора и проверки на прочность балку следующих сечений,:Швеллер,уголок и бульбовый профиль, имея допускаемый момент сопротивления W=58,58cm3. спасибо большое и жду вашу помощь.
31-08-2017: Доктор Лом
Посмотрите статью «Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.13330.2011», там все достаточно подробно расписано.
13-11-2017: Абдуахад
Здравствуйте пожалуйста подскажите почему Ql^2/8 почему деленная на 8 и почему иногда делим на 6 и 24 итд подскажите пожалуйста только это не понял
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).
35215208680f6fbd |
Помогите понять смысл момента инерции, момента сопротивления в сравнении и на практике
наконец-то решил железно разобраться в этом вопросе. пожалуйста, поделитесь своим опытом.
вот пример, самый простой, для удобства. прямоугольник. направление осей и значения моментов инерции и сопротивления см на картинке. считал эксель, результатам верю)
интуитивно я понимаю, что согнуть этот брусок(пластина мб) будет проще вращая вокруг оси z. и очень тяжело провернуть его вокруг оси y.
собственно вопрос.
1) можно ли судить по величине момента сопротивления таким образом: чем больше W, тем сложнее его гнуть?
например, рассмотрим составное произвольное сечение (вы своими глазами его не видели), но вы знаете что Wz>Wy. этот стержень должен работать на изгиб (балка какая-то). тогда можно тупо взять и сказать что это сечение лучше расположить осью у вертикально?
надеюсь смог донести свой вопрос.
если первый вопрос я понял правильно, то дальше
2) смысл момента инерции прочувствовать не могу вообще. так что б глянул, и сравнив их значения по осям, сделать какой то практический вывод.
пожалуйста, опишите ваш процесс обработки простым языком (представьте что я школьник)
спасибо! не ругайтесь что вопрос простой, а написано много