Основные параметры диодов
Основные параметры диодов — это прямой ток диода (Iпр) и максимальное обратное напряжение диода (Uобр). Именно их надо знать, если стоит задача разработать новый выпрямитель для источника питания.
Прямой ток диода
Прямой ток диода можно легко вычислить, если известен общий ток, который будет потреблять нагрузка нового блока питания. Затем, для обеспечения надёжности, необходимо несколько увеличить это значение и получится ток, на который надо подобрать диод для выпрямителя. К примеру, блок питания должен выдерживать ток в 800 мА. Поэтому мы выбираем диод, у которого прямой ток диода равен 1А.
Обратное напряжение диода
Максимальное обратное напряжение диода — это параметр, который зависит не только от значения переменного напряжения на входе, но и от типа выпрямителя. Для объяснения этого утверждения, рассмотрим следующие рисунки. На них показаны все основные схемы выпрямителей.
Рис. 1
Как мы говорили ранее, напряжение на выходе выпрямителя (на конденсаторе) равно действующему напряжению вторичной обмотки трансформатора, умноженному на √2. В однополупериодном выпрямителе (рис. 1), когда напряжение на аноде диода имеет положительный потенциал относительно земли, конденсатор фильтра заряжается до напряжения, превышающего действующее напряжение на входе выпрямителя в 1.4 раза. Во время следующего полупериода напряжение на аноде диода отрицательно относительно земли и достигает амплитудное значения, а на катоде — положительно относительно земли и имеет такое же значение. В этот полупериод к диоду приложено обратное напряжение, которое получается благодаря последовательному соединению обмотки трансформатора и заряженного конденсатора фильтра. Т.е. обратное напряжение диода должно быть не меньше двойного амплитудного напряжения вторички трансформатора или в 2.8 раза выше его действующего значения. При расчёте таких выпрямителей надо выбирать диоды с максимальным обратным напряжением в 3 раза превышающим действующее значение переменного напряжения.
Рис. 2
На рисунке 2 изображён двухполупериодный выпрямитель с выводом средней точки. В нём также, как и в предыдущем, диоды надо подбирать с обратным напряжением в 3 раза превышающем действующее значение входного.
Рис. 3
По другому обстоит дело в случае мостового двухполупериодного выпрямителя. Как можно видеть на рис. 3, в каждый из полупериодов удвоенное напряжение прикладывается к двум непроводящим, последовательно соединённым диодам.
Диодные характеристики
Существуют различные текущие шкалы для операций прямого и обратного смещения. Передняя часть кривой показывает, что диод проводит просто, когда P-область становится положительной, а N-область отрицательной.
Диод почти не проводит ток в направлении высокого сопротивления, то есть когда прегион становится отрицательным, а N-область — положительным. Теперь дырки и электроны отводятся от соединения, что приводит к увеличению барьерного потенциала. Это условие обозначено частью кривой обратного тока.
Пунктирный участок кривой показывает идеальную кривую , которая получилась бы, если бы не было лавинного пробоя. На следующем рисунке показана статическая характеристика переходного диода.
ДИОД IV Характеристики
Характеристики прямого и обратного токового напряжения (IV) диода обычно сравниваются на одной характеристической кривой. Рисунок, изображенный в разделе «Прямая характеристика», показывает, что прямое напряжение и обратное напряжение обычно отображаются на горизонтальной линии графика.
Прямые и обратные значения тока показаны на вертикальной оси графика. Прямое напряжение отображается справа, а обратное напряжение слева. Точка начала или нулевого значения находится в центре графика. Прямой ток удлиняется над горизонтальной осью, а обратный ток распространяется вниз.
Объединенные значения прямого напряжения и прямого тока находятся в верхней правой части графика, а обратное напряжение и обратный ток — в левом нижнем углу. Различные шкалы обычно используются для отображения прямых и обратных значений.
Вперед Характеристика
Когда диод смещен в прямом направлении, он проводит ток (IF) в прямом направлении. Значение IF напрямую зависит от величины прямого напряжения. Соотношение прямого напряжения и прямого тока называется ампер-вольт или IV характеристикой диода. Типичная диодная прямая IV характеристика показана на следующем рисунке.
Ниже приведены наблюдения —
- Прямое напряжение измеряется через диод, а прямой ток — это мера тока через диод.
- Когда прямое напряжение на диоде равно 0 В, прямой ток (IF) равен 0 мА.
- Когда значение начинается с начальной точки (0) графика, если VF постепенно увеличивается с шагом 0,1 В, IF начинает расти.
- Когда значение VF достаточно велико для преодоления барьерного потенциала PN-перехода, происходит значительное увеличение IF. Точку, в которой это происходит, часто называют напряжением колена V K. Для германиевых диодов V K составляет приблизительно 0,3 В, а для кремния — 0,7 В.
- Если значение IF значительно превышает V K , прямой ток становится довольно большим.
Прямое напряжение измеряется через диод, а прямой ток — это мера тока через диод.
Когда прямое напряжение на диоде равно 0 В, прямой ток (IF) равен 0 мА.
Когда значение начинается с начальной точки (0) графика, если VF постепенно увеличивается с шагом 0,1 В, IF начинает расти.
Когда значение VF достаточно велико для преодоления барьерного потенциала PN-перехода, происходит значительное увеличение IF. Точку, в которой это происходит, часто называют напряжением колена V K. Для германиевых диодов V K составляет приблизительно 0,3 В, а для кремния — 0,7 В.
Если значение IF значительно превышает V K , прямой ток становится довольно большим.
Эта операция вызывает чрезмерное нагревание через переход и может разрушить диод. Чтобы избежать этой ситуации, защитный резистор соединен последовательно с диодом. Этот резистор ограничивает прямой ток до максимального номинального значения. Обычно резистор ограничения тока используется, когда диоды работают в прямом направлении.
Обратная характеристика
Когда диод смещен в обратном направлении, он проводит обратный ток, который обычно довольно мал. Типичная обратная IV характеристика диода показана на рисунке выше.
Вертикальная линия обратного тока на этом графике имеет значения тока, выраженные в микроамперах. Количество неосновных носителей тока, которые принимают участие в проведении обратного тока, довольно мало. В общем, это означает, что обратный ток остается постоянным в течение большей части обратного напряжения. Когда обратное напряжение диода увеличивается с самого начала, наблюдается очень небольшое изменение обратного тока. В точке напряжения пробоя (VBR) ток очень быстро увеличивается. В это время напряжение на диоде остается достаточно постоянным.
Эта характеристика постоянного напряжения приводит к ряду применений диода в условиях обратного смещения. Процессы, которые отвечают за проводимость тока в диоде с обратным смещением, называются пробой лавины и пробой стабилитрона .
Диод Технические характеристики
Как и любой другой выбор, выбор диода для конкретного применения должен быть рассмотрен. Производитель обычно предоставляет этот тип информации. Спецификации, такие как максимальные значения напряжения и тока, обычные условия эксплуатации, механические характеристики, идентификация проводов, процедуры монтажа и т. Д.
Ниже приведены некоторые важные характеристики.
Максимальный прямой ток (IFM) — абсолютный максимальный повторяющийся прямой ток, который может проходить через диод.
Максимальное обратное напряжение (VRM) — Абсолютное максимальное или пиковое напряжение обратного смещения, которое может быть приложено к диоду.
Обратное напряжение пробоя (VBR) — минимальное установившееся обратное напряжение, при котором произойдет пробой.
Максимальный прямой импульсный ток (IFM-импульс) — максимальный ток, допустимый в течение короткого интервала времени. Это текущее значение намного больше, чем IFM.
Максимальный обратный ток (IR) — Абсолютный максимальный обратный ток, который допускается при рабочей температуре устройства.
Прямое напряжение (VF) — максимальное падение прямого напряжения для данного прямого тока при рабочей температуре устройства.
Рассеиваемая мощность (PD) — максимальная мощность, которую устройство может безопасно поглощать непрерывно в свободном воздухе при температуре 25 ° C.
Обратное время восстановления (Trr) — максимальное время, которое требуется устройству для включения и выключения стат.
Напряжение пробоя — это минимальное напряжение обратного смещения, при котором PN-переход размыкается при внезапном увеличении обратного тока.
Напряжение колена — это прямое напряжение, при котором ток через соединение начинает быстро увеличиваться.
Пиковое обратное напряжение — это максимальное обратное напряжение, которое можно приложить к PN-соединению, не повреждая его.
Maximum Forward Rating — максимальный мгновенный прямой ток, который может пройти PN-переход, не повредив его.
Максимальная мощность — это максимальная мощность, которая может рассеиваться от соединения без повреждения соединения.
Максимальное обратное напряжение на диодах определяется формулой
В ряде практических приложений для выпрямления переменного тока и плавного регулирования мощности передаваемой в нагрузку используют тиристорные преобразователи. При этом, малые токи управления позволяют управлять большими токами нагрузки.
Пример простейшего управляемого по мощности тиристорного выпрямителя показан на рис. 7.10.
Рис. 7.10. Тиристорная схема выпрямителя
На рис. 7.11 приведены временные диаграммы, поясняющие принцип регулирования среднего значения выпрямленного напряжения.
Рис. 7.11. Временные диаграммы работы тиристорного выпрямителя
В этой схеме предполагается, что входное напряжение Uвх для регулируемого тиристорного формируется, например, двухполупериодным выпрямителем. Если управляющие импульсы Uу достаточной амплитуды подаются в начале каждого полупериода (участок о-а на диаграмме Uвых), выходное напряжение будет повторять напряжение двухполупериодного выпрямителя. Если сместить управляющие импульсы к середине каждого полупериода, то импульсы на выходе будут иметь длительность, равную четверти полупериода (участок b-с). Дальнейшее смещение управляющим импульсов приведет к дальнейшему уменьшению средней амплитуды выходных импульсов (участок d – e).
Таким образом, подавая на тиристор управляющие импульсы, сдвигающиеся по фазе относительно входного напряжения, можно превратить синусоидальное напряжение (ток) в последовательность импульсов любой длительности, амплитуды и полярности, то есть можно изменять действующее значение напряжения (тока) в широких пределах.
7.3 Сглаживающие фильтры
Рассмотренные схемы выпрямления позволяют получать однополярное пульсирующее напряжение, которое не всегда применимо для питания сложных электронных приборов, поскольку, из-за больших пульсаций, приводят к неустойчивости их работы.
Для значительного уменьшения пульсации применяют сглаживающие фильтры. Важнейшим параметром сглаживающего фильтра является коэффициент сглаживания S, определяемый по формуле S=1/2, где 1 и 2 – коэффициенты пульсаций на входе и выходе фильтра соответственно. Коэффициент пульсации показывает во сколько раз фильтр уменьшает пульсации. В практических схемах коэффициент пульсаций на выходе фильтра может достигать значений 0,00003.
Основными элементами фильтров являются реактивные элементы – емкости и индуктивности (дроссели). Рассмотрим вначале принцип работы простейшего сглаживающего фильтра, схема которого приведена на рис. 7.12.
Рис. 7.12. Схема простейшего сглаживающего фильтра с однополупериодным выпрямителем
В этой схеме сглаживание напряжения на нагрузке после однополупериодного диодного выпрямителя VD осуществляется с помощью конденсатора С, подключенного параллельно нагрузке Rн.
Временные диаграммы, поясняющие работу такого фильтра, приведены на рис. 7.13. На участке t1 – t2 входным напряжением диод открывается, а конденсатор заряжается. Когда входное напряжение начнет уменьшаться, диод закрывается напряжением, накопленным на конденсаторе Uс (участок t1 – t2). На этом интервале источник входного напряжения отключается от конденсатора и нагрузки, и конденсатор разряжается через сопротивления нагрузки Rн.
Рис. 7.13. Временные диаграммы работы фильтра с однополупериодным выпрямителем
Если ёмкость достаточно велика, по разряд емкости через Rн будет происходить с большой постоянной времени =RнС, и следовательно, уменьшение напряжение на конденсаторе будет небольшим, а эффект сглаживания – значительным. С другой стороны, чем больше емкость тем короче отрезок t1 – t2 в течении которого диод открыт и через него течет ток i возрастающий (при заданном среднем токе нагрузки) при уменьшении разности t2 – t1. Такой режим работы может привести к выходу из строя выпрямительного диода, и, кроме того, является достаточно тяжелым и для трансформатора.
При использовании двухполупериодных выпрямителей величина пульсаций на выходе емкостного фильтра уменьшается, поскольку конденсатор за время между появлением импульсов на меньшую величину, что хорошо иллюстрируется рис. 7.14.
Рис. 7.14. Сглаживание пульсаций двухполупериодного выпрямителя
Для расчета величины пульсаций на выходе емкостного фильтра произведем аппроксимацию пульсаций выходного напряжения пилообразной кривой ток, как это показано на рис. 7.15.
Рис. 7.15. Аппроксимация напряжения пульсаций
Изменение заряда на конденсаторе определяется выражением
где Т1 – период пульсаций, Iн – среднее значение тока нагрузки. С учетом того, что Iн = Иср/ Rн, получаем
.
Из рис. 7.15 следует, что
,
при этом двойная амплитуда пульсаций определяется выражением
.
Сглаживающими свойствами обладают и индуктивные фильтры, причем лучшими сглаживающими свойствами обладают фильтры, содержащие индуктивность и емкость, соединенные так, как показано на рис. 7.16.
Рис. 7.16. Сглаживающий фильтр с индуктивностью и емкостью
В этой схеме емкость конденсатора выбирается таким образом, чтобы его реактивное сопротивление было значительно меньшим сопротивления нагрузки. Достоинством такого фильтра является то, что он уменьшает величину входной пульсации ∆U до величины , гдеω — частота пульсаций.
На практике широкое распространение получили различные типы F — образных и П – образных фильтров, варианты построения которых представлены на рис. 7.17.
При небольших токах нагрузки хорошо работает F — образный выпрямитель, представленный на рис. 7.16.
Рис. 7.17. Варианты построения фильтра
В наиболее ответственных схемах используют многозвенные схемы фильтрации (рис. 7.17 г).
Часто дроссель заменяют резисторами, что несколько снижает качество фильтрации, но значительно удешевляет фильтры (рис. 7.17 б, в).
Основной внешней характеристикой выпрямителей с фильтром является зависимость среднего значения выходного напряжения Uср (напряжения на нагрузке) от среднего значения выходного тока.
В рассмотренных схемах увеличение выходного тока приводит к уменьшению Uср из-за увеличения падения напряжения на обмотках трансформатора, диодах, подводящих проводах, элементах фильтра.
Наклон внешней характеристики при заданном среднем токе определяют через выходное сопротивление Rвых, определяемое по формуле:
Icр – задано. Чем меньше величина Rвых, тем меньше выходное напряжение зависит от выходного тока, тем лучше схема выпрямителя с фильтром. На рис. 7.18 приведены типовые зависимости Uср от Iср для различных вариантов фильтрации.
Рис. 7.18. Типовые зависимости Uср от Iср для различных схем фильтрации
Максимальное обратное напряжение на диоде
Некоторые популярные диоды
Определение и типы диодов
Упрощенно диод можно понимать как активный электрический элемент проводящий ток только в одном направлении. Как клапан в гидравлике. Существует несколько типов диодов отличающихся как по физическому принципу работы, так и по базовому материалу. В очень общих чертах они делятся на полупроводниковые и вакуумные. Итак, диоды бывают:
— вакуумные (они же кенотроны);
— на основе p-n перехода между полупроводниками различных типов проводимости: кремниевые (Si) и карбидокремниевые (SiC) диоды;
— на основе контакта Шоттки между металлом и полупроводником.
Вакуумные диоды используются крайне редко, только в спецприложениях, например высоковольтной и высокочастотной технике. Наиболее популярными диодами являются кремниевые диоды и диоды Шоттки.
Кроме физической природы диоды классифицируются по функциональному назначению:
— выпрямительные диоды , используемые, как правило, для выпрямления сетевого напряжения низкой частоты (50 Гц). Как правило, это кремниевые, дешевые диоды. Они ставятся как непосредственно на входе безтрансформаторных импульсных источников питания, так и после трансформатора в трансформаторных источниках.
— быстродействующие кремниевые диоды — используются в составе импульсных источников питания при высоких значениях обратного напряжения (100-1000 вольт). Отличаются малым временем восстановления обратной проводимости, составляющим величину менее 200 нс. Внутри класса имеют условную подклассификацию Fast (500-150 нс), UltraFast (70-50 нс), HiperFast (35-20 нс).
— кремниевые импульсные диоды – используются в составе функциональных (не силовых) цепей. Типичный пример – диод 1N4148; Отличаются малыми рабочими токами (миллиамперы) и большим быстродействием (время обратного восстановления 1N4148 – 4 нс).
— высоковольтные диоды – представляют собой последовательное соединение нескольких (5-20 штук) кристаллов кремниевых диодов в одном корпусе. При этом максимальное обратное напряжение составляет единицы-десятки киловольт, а ток как правило – небольшой и не превышает 1 ампера. Используются в ряде специальных приложений. Быстродействие этих диодов, как правило, невысокое.
Отдельно следует выделить диоды Шоттки – которые используются и как функциональные (сигнальные) диоды и как силовые. Их отличительными чертами являются высокое быстродействие, малое падение напряжения (0,3-0,5 В) по сравнению с кремниевыми диодами (1-1,2 В). К недостаткам относят сравнительно малое обратное напряжение (20-100 В) чувствительность к перенапряжению, значительный обратный ток. Диоды Шоттки часто используются в качестве выпрямительных диодов высокочастотных преобразователей с малым выходным напряжением.
Здесь не рассматриваются диоды чисто радиочастотных применений СВЧ, варикапы, смесительные и т.д. поскольку это вы ходит за рамки данного повествования.
Условное обозначение диода представлено на рисунке VD.1
Электрод, в который втекает ток, называется анодом, а электрод из которого ток вытекает – катодом. Исторические названия эти связаны с вакуумными диодами, в которых электроны эмитировались накальным катодом и принимались анодом. Символически диод обозначает собой направление протекания тока.
Функциональные применения диода
— выпрямление переменного тока в составе тех или иных выпрямителей (включая умножители напряжения);
— защита от превышения напряжения в схемах ограничения уровня и снабберах;
— в пиковых детекторах на операционных усилителях;
— в низковольтных стабилизаторах напряжения (используется прямое падение напряжения);
— в схемах на переключаемых конденсаторах, включая схемы бустрепного питания;
— схемах реализации логических операций ИЛИ (рисунок VD.3 ).
Ниже представлено несколько примеров использования диодов.
— схемах ограничения амплитуды сигнала (рисунок VD.4).
Характеристики диодов
Основной характеристикой диода является его ВАХ – вольтамперная характеристика – зависимость тока пропускаемого диодом от напряжения на нем. Она не линейна и имеет фактически экспоненциальный характер.
Форма кривой ВАХ диода (рисунок VD.5) зависит от температуры: при нагреве уменьшается прямое падение напряжения и возрастает обратный ток, снижается напряжение пробоя.
Из вольтамперной характеристики следуют её производные:
— прямое падение напряжение на диоде VF (при заданных токе и температуре);
— обратный ток утечки IRM (при заданном обратном напряжении и температуре);
— максимальное обратное напряжение VR (при заданной температуре).
Площадь p-n перехода, размер кристалла, конструкция теплоотвода определяют мощностные характеристики диода:
— максимальный постоянный рабочий ток;
— максимальный импульсный ток (при заданной длительности импульса);
— максимальная отводимая (рассеиваемая мощность);
— тепловое сопротивление корпуса.
Динамическими характеристиками диода, определяющими его быстродействие, являются:
— время восстановления при резкой смене напряжения с прямого на обратное;
На рисунках VD.6 — VD.8 представлены экспериментально измеренные ВАХ распространенных типов диодов (для сравнения представлены ВАХ кремниевых диодов и диода Шоттки).
Основные параметры реальных диодов
1. Максимальное импульсное обратное напряжение (Peak Repetitive Reverse Voltage) VRRM– максимальная величина прикладываемого к диоду импульсного обратного напряжения.
2. Максимальное рабочее обратное напряжение (Working Peak Reverse Voltage) VRWM – максимальная величина прикладываемого к диоду обратного напряжения в рабочем режиме.
3. Максимальное блокирующее напряжение (DC Blocking Voltage) VR – максимальная величина прикладываемого к диоду постоянного напряжения. Выше этого напряжения начинается пробой. Соответствует началу пробоя на обратной ветви ВАХ.
NB: На практике все перечисленные типы напряжения равны между собой и при проектировании схем необходимо, не допускать превышения напряжения на диоде данной величины.
4. Максимальное среднеквадратичное обратное напряжение (RMS Reverse Voltage) VR(RMS) – максимальная величина действующего (среднеквадратичного) напряжения в цепи переменного тока, превышение которой приводит к пробою диода. Фактически подразумевается переменное напряжение синусоидальной формы.
5. Средний рабочий ток (Average Rectified Output Current) IO – максимальное среднеквадратичное значение тока проходящего через диод в стационарном режиме.
6. Максимальный импульсный ток (Repetitive peak forward current) IFRM — максимальная амплитуда импульсного периодического тока проходящего через кристалл диода. Как правило, указывается длительность импульсов и частота повторения.
7. Максимальный импульсный непериодический ток (Non-Repetitive Peak Forward SurgeCurrent) IFSM — максимальная амплитуда импульсного непериодического тока проходящего через кристалл диода. Как правило, указывается длительность импульса.
8. Прямое падение напряжения на диоде (Forward Voltage) VFM – падение напряжения на диоде при прямом смещении (в открытом состоянии). Как правило, указывается при конкретной величине прямого тока.
9. Максимальный обратный ток (Peak Reverse Current) IRM – максимальный обратный ток через диод. Указывается при максимальном обратном напряжении на диоде и при конкретном значении температуры.
10. Ёмкость p-n перехода (Typical Junction Capacitance) Cj – паразитная емкость p-nперехода диода. Сильно зависит от приложенного обратного напряжения, поэтому в datasheetкроме усредненной величины, как правило, приводят зависимость емкости от обратного напряжения.
11. Тепловое сопротивление кристалл – воздух (Typical Thermal Resistance Junction toAmbient) RθJA – тепловое сопротивление между кристаллом (p-n переходом) диода и окружающим воздухом. Зависит от типа корпуса.
12. Максимальная рабочая температура (Maximum DC Blocking Voltage Temperature) TA – максимальная рабочая температура при которой сохраняется указанное значение максимального обратного напряжения.
13. Максимальная рассеиваемая мощность (Total power dissipation) Ptot – максимальная мощность рассеиваемая корпусом диода.
14. Параметр максимальной энергии поглощаемой кристаллом без разрушения (Rating for fusing) I 2 t – произведение квадрата максимального импульсного тока через диод на его длительность. Это соотношение, измеряемое в А 2 с (ампер в квадрате на секунду) используется при выборе защитных цепей от перегрузки (предохранителей).
15. Время восстановления обратной проводимости (Reverse recovery time) trr – время за которое диод после приложения обратного напряжения переходит в закрытое состояние (обратная проводимость).
Максимальные ток и мощность диода
Режим постоянного тока
Полупроводниковый диод – нелинейный элемент мощность, рассеиваемая на диоде равна произведению напряжения на диоде VVD и тока через него IVD:
Для практических расчетов в качестве VVD можно брать падение напряжения при номинальном токе, указываемое в справочных листках. Поскольку напряжение на диоде составляет величину порядка 1,0-1,5 В (для кремниевого диода, для Шоттки меньше) и слабо изменяется с ростом тока, то в первом приближении можно считать, что рассеиваемая на диоде мощность прямо пропорциональна току через него:
Это существенно отличает нелинейный диод от линейного резистора, мощность которого пропорциональна квадрату тока. В справочных листках указывается максимальное значение постоянного тока через диод. Этот ток задает максимальное значение отводимой от кристалла диода тепловой мощности.
Представленная формула описывает потери на кристалле диода при прямом смещении, то есть при протекании прямого тока через диод. Потери при обратном смещении, то есть при реверсном токе обычно пренебрежимо малы, однако в ряде случаев их необходимо учитывать (об этом ниже).
Режим импульсного тока
Импульсный ток через диод может в разы превышать максимальное значение для постоянного тока. В режиме импульсных токов на первое место выходит максимальная энергия рассеивания кристалла диода, определяющая предельные режимы импульсных нагрузок при которых еще не происходит термическое разрушение кристалла. В справочных листках обычно приводят номограммы произведения длительности токового импульса на его величину.
Динамические характеристики диода. Восстановление обратной проводимости. Барьерная емкость диода
Быстродействие диода, то есть свойство быстро восстанавливать обратную проводимость, является важной характеристикой для диодов, работающих в условиях быстрой смены полярностей напряжения прикладываемого к диоду – в высокочастотных выпрямителях, схемах бустрепного питания, детекторных схемах и ряде других.
На рисунке VD.9 представлен один из типовых фрагментов электрических схем с диодами и полупроводниковыми ключами. Эта схема описывает жесткий режим восстановления обратной проводимости диода. На примере этой схемы поясним процесс восстановленияобратной проводимости диода [EE33D — Power Electronic Circuits ссылка], [2 Reasons Why Soft-Recovery Trr is Important in High Voltage Diodes ссылка], [Understanding Diode Reverse Recovery and its Effect on Switching Losses. Peter Haaf, Jon Harper. Fairchild Power Seminar 2007]. Временные диаграммы токов и напряжений, описывающих процессы в представленной схеме представлены на рисунке VD.10.
Для упрощенного понимания процессов выключения диода примем индуктивность L в схеме достаточно большой, чтобы она фактически играла роль источника тока. В начальный момент времени полупроводниковый ключ закрыт, и ток индуктивности полностью замыкается через диод. После подачи управляющего импульса на затвор транзистора и превышения им некоторого порогового напряжения происходит постепенный рост тока через ключ ISW, начиная с момента времени tswitch. При этом ток, протекающий через диод IDпостепенно уменьшается, поскольку ток индуктивности начинает частично «сливаться» через открывающийся ключ. В некоторый момент времени (начало интервала tA) когда ток индуктивности полностью замкнется через ключ (IL = ISW) ток через диод изменит свое направление. В первой половине импульса реверсного тока (период tA) происходит разряд емкости p-n перехода при этом напряжение на диоде некоторое время остается положительным а обратный ток достигает максимума. Далее обратный ток через диод начинает снижаться (период tB), а обратное напряжение возрастает до напряжения источника VDC.
Практически важной характеристикой является форма кривой обратного тока в момент восстановления обратной проводимости (рисунок VD.10). По кривой определяется время восстановления и «мягкость восстановления». Кривая реверсного тока имеет два характерных периода:
— период tA – время от начала импульса реверсного тока (пересечение током нулевой линии) до максимального значения обратного тока IRRM . Соответствует разряду зарядов накопленных в так называемой обеднённой области p-n перехода.
— период tB – время между моментом соответствующим максимуму обратного тока IRRM и моментом когда ток уменьшится на 25% от максимального достигнутого значения.
Время восстановления обратной проводимости (reverse recovery time) tRR определяется по осциллограмме обратного тока (рисунок VD.10) как время между пересечением тока нулевой отметки (начало реверсного тока) и моментом когда величина реверсного тока спадает на 25% от своего максимально достигнутого значения. Время восстановления – интуитивно понятный параметр, характеризующий время, за которое диод восстанавливает свои непроводящие свойства. Время восстановления обратной проводимости tRR равно сумме времен периодов tA и tB:
Максимальное значение реверсного тока IR связано с длительностью периода tA и скоростью спада тока:
Критерий «мягкости восстановления» (softness factor) SF – критерий определяющий скорость обрыва обратного тока. Если обрыв тока происходит слишком резко, то это может стать причиной нежелательных перенапряжений обусловленных паразитными индуктивностями контуров. Иногда этот эффект используют в генераторах импульсов на основе специализированных SOS-диодов. В качестве критерия «мягкости» использую так называемы «фактор мягкости» SF определяемый как отношение длительностей периодов tB к tA :
Для обычных диодов tA много больше tB , для импульсных «мягких» диодов наоборот tBмного больше tA. «Фактор мягкости» SF можно определить из datasheet диодов исходя из представленных временных осциллограмм восстановления обратной проводимости. Обычно для импульсных силовых диодов класса «ultrafast» характерное значение SF равно 1, для обычных диодов величина SF может составлять 0,2-0,6.
Заряд обратного восстановления (Reverse Recovery Charge) QRR – это реверсный заряд, который должен пройти через переход диода для перевода его из состояния проводимости в закрытое состояние. Заряд обратного восстановления является базовым параметром диода, определяющим его динамические характеристики. Исходя из формы импульса реверсного тока этот заряд равен:
Откуда максимальный ток определяется из соотношения:
Приравнивая выражения для IR получаем:
Преобразуя это выражение получаем:
Учитывая, что tA и tB связаны через «фактор мягкости» SF:
Откуда выразим tA:
Откуда получаем практически важные соотношения:
— для расчета времени восстановления обратной проводимости tRR :
— и для расчета максимальной величины обратного тока IRRM :
Используя представленные выражения, рассчитываются динамические характеристики диода.
Барьерная емкость диода — собственное значение емкости p-n перехода находящегося в обратном смещении (закрытом состоянии). В дополнение к выше описанному инерционному процессу «переключения» диода в непроводящее состояние диод, когда к нему приложено обратное напряжение он (диод) обладает собственным значением барьерной емкости, которая зависит от напряжения, что важно также учитывать при расчете динамических режимов. Емкость пропорциональна площади p-n перехода, на практике это означает, что более мощные диоды с большим номинальным током будут иметь и большее значение емкости. Реально величина емкости не является постоянной и существенно зависит от приложенного напряжения.
Расчет тепловых потерь в диоде на переключение
В момент восстановления проводимости к диоду приложено обратное напряжение и через него протекает некоторый импульс тока длительностью trev. Таким образом, в кристалле диода выделяется некоторая энергия:
Общая выделяемая тепловая мощность пропорциональна частоте импульсов f.
Основное выделение энергии происходит в периода tB когда напряжение на диоде имеет величину существенно большую по сравнению с прямым падением напряжения (как в период tA). Полагая линейную форму спада тока и роста обратного напряжения получим:
Выражение для напряжения на диоде будет иметь вид:
Выражение для тока через диод будет иметь вид:
Выражение для выделяющейся мощности на диоде будет иметь вид:
Перемножая VVD(t) и IVD(t), получаем:
Упрощая которое получаем выражение для мощности динамических потерь PVD_trans«на переключение»:
VDC – обратное напряжение, (напряжения источника питания);
f — рабочая частота;
IRRM — максимальная величина обратного тока, вычисляемая по формуле:
здесь: QRR заряд обратного восстановления (Reverse Recovery Charge) – представлен в datasheet-ах, скорость спада тока di/dt определяется характеристиками схемы, а «фактор мягкости» SF можно определить из datasheet диодов исходя из представленных временных осциллограмм восстановления обратной проводимости. Обычно для импульсных диодов характерное значение SF равно 1.
tB — время между моментом соответствующим максимуму обратного тока IRRM и моментом когда ток уменьшится на 25% от максимального достигнутого значения. Учитывая связь tA и tB через «фактор мягкости» SF получаем:
Отсюда tB может быть вычислено по соотношению:
Учитывая, что в большинстве случаев SF≈1, то в первом приближении tB может быть определено как:
Объединим в итоговое выражение для мощности динамических потерь диода PVD_trans «на переключение»:
Упростим данное соотношение:
Результирующее выражение для мощности динамических потерь PVD_trans «на переключение» имеет вид:
QRR — заряд обратного восстановления;
VDC – обратное напряжение, (напряжения источника питания);
f — рабочая частота;
SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1).
В ряде случаев в datasheet не приводится значение заряда обратного восстановления QRR, а приводятся:
— зависимости тока восстановления обратной проводимости от IRRM от скорости спада тока di/dt;
— зависимости времени восстановления обратной проводимости tRR от скорости спада тока di/dt.
В этом случае мощности динамических потерь PVD_trans вычисляется по соотношению:
VDC – обратное напряжение, (напряжения источника питания);
IRRM(di/dt) — ток восстановления обратной проводимости от IRRM при заданной скорости спада тока di/dt;
tRR(di/dt) — зависимости времени восстановления обратной проводимости tRR при заданной скорости спада тока di/dt.
SF — SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1);
f — рабочая частота.
Обратная ветвь ВАХ – напряжение пробоя, обратный ток
По мере увеличения прикладываемого к диоду обратного напряжения монотонно возрастает и обратный ток. При этом для каждого диода существует обратное напряжение, при достижении которого резко возрастает обратный ток и напряжение на диоде быстро падает. При этом пороговом напряжении происходит пробой диода – в большинстве случаем необратимое изменение внутренней структуры диода, сопровождаемое нарушением целостности p-n перехода. Следствием пробоя является выход диода из строя. Исключением являются лавинные диоды, пробой которых носит обратимый характер.
Обратный ток возрастает с увеличением температуры, также с увеличением температуры снижается напряжение пробоя.
Для кремниевых диодов, эксплуатируемых при нормальной температуре тепловой мощностью, выделяемой при приложенном обратном напряжении можно пренебречь. Однако при более жестком температурном режиме и больших значениях обратного напряжения эта мощность может иметь значительную величину, сопоставимую с мощностью потерь в проводящем состоянии.
Для диодов Шоттки обратный ток существенно больше, чем для кремниевых диодов и его необходимо учитывать в расчетах в любом случае.
Мощность, рассеиваемая на диоде при обратном смещении равна произведению напряжения приложенного к диоду VVD_rev и протекающего под действием этого напряжения обратного тока через него IVD_rev:
— для диода MUR1100E при температуре 100 °С обратный ток составляет величину порядка 600 мкА, если к диоду приложено обратное напряжение 800 В то выделяющаяся тепловая мощность равна 0,48 Вт!
— для диода серии US1 максимальный обратный ток составляет 150 мкА (при температуре 100 °С) и при обратном напряжении 1000 В выделяющаяся тепловая мощность составляет 0,15 Вт.
Важно то, что здесь работает принцип положительной обратной связи: с ростом температуры выделяемая мощность увеличивается, что в свою очередь приводит к росту температуры.
Итак, тепловой режим диода работающего в условиях тока переменной полярности складывается из мощности, выделяемой при прохождении прямого тока, мощности выделяемой в диоде при смене направления тока и мощности выделяемой при обратном смещении:
PVD_total – общая мощность, рассеиваемая на диоде;
PVD_stat+ – мощность, выделяемая при прохождении прямого тока;
PVD_stat- – мощность, выделяемая при прохождении обратного тока;
PVD_trans – мощность, выделяющаяся на диоде в результате переходных процессов.
Последовательное и параллельное включение диодов
Последовательное включение
Последовательное включение диодов используют для увеличения максимального обратного напряжения VR (рисунок VD.11). При этом необходимо помнить, что увеличивается прямое падение напряжения на диодной сборке.
При приложении обратного напряжения к сборке падения напряжения на диодах распределяются в соответчики с обратной ВАХ каждого из диодов. Из за разброса ВАХ может возникнуть ситуация в которой к некоторым диодам сборки будет приложено напряжение превышающее максимальное и возникнет пробой одного диода сборки. После этого общее приложенное напряжение перераспределится между оставшимися диодами и при этом напряжение на каждом из них возрастет. Это с высокой долей вероятности может привести к постепенному выгоранию всех диодов сборки. Для повышения надежности применяют выравнивающие резисторы, сопротивление которых выбирается таким образом, чтобы ток через резистор был в 2-5 раз больше максимального тока утечки диода:
VR – максимальная величина прикладываемого к диоду постоянного напряжения.
IRM – максимальный обратный ток через диод. В расчетах необходимо учитывать ток при температуре соответствующей рабочей температуре эксплуатации.
Параллельное включение
Параллельное включение диодов можно использовать для диодов с положительным (например на основе карбида кремния SiC) или небольшим отрицательным температурным коэффициентом более 2 мВ/К, но при условии их термического соединения (размещение на одном радиаторе). Это необходимо для того чтобы токи, протекающие через диоды выравнивались. На практике при параллельном соединении двух кремниевых диодов или диодов Шоттки максимальные рабочий ток не удваивается, а увеличивается на 50-70 %. Это обусловлено разницей хода ВАХ диодов, так что один диод будет нагружен по максимуму, а второй будет ему «помогать». Физика этого эффекта объясняется наличием положительной обратной связи: если через какой-либо из диодов протекает несколько больший, чем через другой, то он нагревается больше. При нагреве кремниевых диодов ВАХ изменяется таким образом, что при постоянном приложенном напряжении ток возрастает. Это приводит еще большему увеличению доли общего тока через этот диод. Уменьшить эту положительную обратную связь можно путем организации термической связи между диодами, то есть разместить их на одном радиаторе охлаждения. В этом случае «лидирующий» по току диод будет подогревать «отстающий» и увеличивать долю тока через него. В целом на практике целесообразно параллельно соединять лишь диоды, расположенные на одном кристалле в одном корпусе.