Обратное напряжение диода что это
Перейти к содержимому

Обратное напряжение диода что это

  • автор:

Прямое и обратное напряжение

Когда диод открыт, на нем имеется прямое напряжение. Обратным напряжением считается величина во время закрытия диода и прохождения через него обратного тока. Сопротивление диода при прямом напряжении очень мало, в отличие от обратного напряжения, возрастающего до тысяч кОм.

Если диоды использовать в работе с переменным током, то при плюсовой полуволне синуса напряжения он будет открыт, а при минусовой – закрыт. Такое свойство диодов применяют для выпрямления напряжения. Поэтому такие устройства называются выпрямителями.

4.3. Вольт-амперная характеристика диода Слайд № 11

Зависимость U = f(I) называется вольт-амперной характеристикой диода.

Характеристика диода выражается графиком, на котором видна зависимость тока, напряжения и его полярности. Вертикальная ось координат в верхней части определяет прямой ток, в нижней части – обратный.

Горизонтальная ось справа обозначает прямое напряжение, слева – обратное. Прямая ветка графика выражает ток пропускания диода, проходит рядом с вертикальной осью, так как выражает повышение прямого тока.

Вторая ветка графика показывает ток при закрытом диоде, и проходит параллельно горизонтальной оси. Чем круче график, тем лучше диод выпрямляет ток. После возрастания прямого напряжения, медленно повышается ток. Достигнув области скачка, его величина резко нарастает.

На обратной ветви графика видно, что при повышении обратного напряжения, величина тока практически не возрастает. Но, при достижении границ допустимых норм происходит резкий скачок обратного тока. Вследствие этого диод перегреется и выйдет из строя.

4.4. Пробой р-n-перехода Слайд № 12

Пробоем p-n-перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n-перехода.

Электрический пробой

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n-переходе. Такой пробой является обратимым, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Благодаря этому электрический пробой используют в качестве рабочего режима в полупроводниковых диодах.

В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Туннельный пробой

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n-переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области pтипа в область nтипа без изменения своей энергии. Р-n-переходы малой толщины возможны только при высокой концентрации примесей в молекуле полупроводника.

Лавинный пробой

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n-переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон – дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Напряжение светодиодов приложенное в обратном направлении.

Прямое напряжение LED в основном коррелируется в зависимости от цвета свечения и часто хорошо описано в даташитах, в то же время обратное напряжение светодиода не имея практического значения не считается важным параметром.

Для правильного подключения и понимания принципов работы различных контроллеров и драйверов светодиодов необходимо хотя бы поверхностно разобраться с понятием ток, напряжение , область допустимой мощности эксплуатации и овладеть минимальным набором терминов и приёмов электроники для начинающих. Мы постараемся объяснить это понятным языком как для «чайника».

Прямое напряжение светодиода.

Напряжение светодиодов – это непосредственно напряжение на кристалле светодиода и оно мало зависит от протекающего по кристаллу тока. Обратите внимание на следующий график

обратное напряжение светодиода

Характеристики светодиодов напряжение и ток

По вертикальной оси отложен ток в миллиамперах, по горизонтальной оси отложено напряжение в вольтах. Рассмотрим участок отрицательных токов и напряжений – это ситуация когда напряжение прикладывается к кристаллу в нерабочем обратном направлении – диод запирается. Хорошо видно что напряжение светодиодов до примерно 25 вольт практически не вызывает протекание тока сквозь кристалл и лишь превышение порога в 25 вольт вызывает существенное увеличение протекающего тока .

Для чего желательно знать обратное напряжение светодиода?

Обратное пробивное напряжение светодиодов не является стандартизированным выдерживаемым при производстве параметром и может существенно различаться у различных экземпляров и различного цвета свечения LED , но в данной ситуации нас интересует лишь принцип – поэтому конкретная величина пробивного напряжения нам сейчас не важна. Так вот при превышении порога в 25 вольт увеличение напряжения на несколько вольт сильно увеличивает протекающий сквозь кристалл ток, до определённого момента это не важно , но при превышении допустимой рассеиваемой на кристалле мощности происходит так называемый тепловой пробой кристалла.

Немного формул : рассеиваемая мощность P=UxI , где – напряжение на кристалле , — ток протекающий сквозь кристалл , — мощность выделяющаяся на кристалле. При размере smd светодиода в простонародье именуемого 3528 допустимая неразрушающая мощность равняется примерно 0,25 ватт. При превышении этого порога будут происходить необратимые процессы – светодиод просто сгорит. При напряжении порядка 25 вольт достаточно будет тока в 100 миллиампер. По нашей ВАХ это будет примерно соответствовать 27 вольтам обратного напряжения. То есть если приложить к кристаллу в обратном направлении напряжение в 27 вольт – кристалл перегорит — напряжение светодиодов

в обратном направлении не должно быть больше 25 вольт. . Какие выводы следует сделать на основании этого графика?

Напряжение светодиодов в 25 вольт приложенное в обратном напряжении выведет кристалл из строя , при этом напряжение в 12 – 15 вольт в обратном направлении абсолютно безопасно для LED.

Рабочее напряжение светодиодов приложеное в обратном направлении не зажигает и не выводит из строя кристалл.

Для использования в наружной рекламе LED обратная ветвь ВАХ больше нам не нужна – посмотрим напряжение светодиодов в прямом направлении.

телефон : 063-761-25-48
email: info @ f-design.com.ua

Продукция F-Design

вывеска
объёмные буквы
лайтбокс
уголок покупателя
кабинетная табличка
режим работы
банер
штендер
наклейка на витрину
открыто-закрыто
витринная вывеска
электронное табло
банер
и много другого

Что такое обратное напряжение на выпрямительном диоде? ??

Считай диод аналогом одностороннего клапана в водяной трубе. Если напряжение прямое — это давление воды, которое открывает клапан. В этом режиме диод характеризуется силой тока, которую он может пропустить безболезненно. Чем шире окно клапана, тем больше воды в секунду он пропускает. Если же напряжение обратное — это давление воды, запирающее клапан. Теперь никакого течения воды нет, и нет разговора о силе тока. А вот напряжение — это как раз та сила давления воды, которую клапан может сдержать, прежде чем сломается. Если превысить напряжение, клапан будет разрушен — извиняюсь, диод будет пробит, и начнет пропускать ток в обоих направлениях, т. е. перестанет быть диодом. А если превысить напряжение еще сильнее, то разорвет трубу, и вода совсем никуда течь не сможет (т. е. диод поведет себя как плавкий предохранитель, превратится в изолятор навсегда 🙂
Так диоды и выбирают: для прямого направления оценивают силу тока, а для обратного — напряжение.

Остальные ответы
Это напряжение, приложенное в полярности, в которой диод закрыт.

Напряжение обратного полупериода, когда диод закрыт, нормируется маркой диода как U -обр. и. макс. в вольтах А также выпрямленный диодом ток- iвп. ср. макс, в амперах.

У диода есть полярность подключения (имеется катод и анод) . Прямое напряжение — напряжение, при котором диод пропускает ток (катод диода подключен к минусу, анод — к плюсу. Обратное напряжение (обратная полярность подключения) — когда катод подключен к плюсу, а анод — к минусу, при этом диод не пропускает ток!
Обычно говорят о максимально допустимом обратном наряжении на диоде (при превышении которого наступает пробой диода и выход его из строя)

Основные параметры выпрямительных диодов

Для выпрямления низкочастотных переменных токов, то есть для превращения переменного тока в постоянный или пульсирующий, служат выпрямительные диоды, принцип действия которых основан на односторонней электронно-дырочной проводимости p-n-перехода. Диоды данного типа применяются в умножителях, выпрямителях, детекторах и т. д.

Производятся выпрямительные диоды с плоскостным либо с точечным переходом, причем площадь непосредственно перехода может составлять от десятых долей квадратного миллиметра до единиц квадратных сантиметров, в зависимости от номинального для данного диода выпрямленного за полупериод тока.

Вольт-амперная характеристика (ВАХ) полупроводникового диода имеет прямую и обратную ветви. Прямая ветвь ВАХ практически показывает связь тока через диод и прямого падения напряжения на нем, их взаимозависимость.

Обратная ветвь ВАХ отражает поведение диода при подаче на него напряжения обратной полярности, где ток через переход очень мал и практически не зависит от величины приложенного к диоду напряжения, пока не будет достигнут предел, при котором случится электрический пробой перехода и диод выйдет из строя.

Максимальное обратное напряжение диода — Vr

Первой и главной характеристикой выпрямительного диода является максимально допустимое обратное напряжение. Это то напряжение, приложив которое к диоду в обратном направлении, можно будет еще уверенно утверждать, что диод его выдержит, и что данный факт не скажется отрицательно на дальнейшей работоспособности диода. Но если данное напряжение превысить, то нет гарантии, что диод не будет пробит.

Данный параметр для разных диодов отличается, лежит он в диапазоне от десятков вольт до нескольких тысяч вольт. Например для популярного выпрямительного диода 1n4007 максимальное постоянное обратное напряжение равно 1000В, а для 1n4001 – составляет всего 50В.

Средний ток диода — If

Диод выпрямляет ток, поэтому следующей важнейшей характеристикой выпрямительного диода будет средний ток диода — средняя за период величина выпрямленного постоянного тока, текущего через p-n-переход. Для выпрямительных диодов данный параметр может составлять от сотен миллиампер до сотен ампер.

Например для выпрямительного диода 2Д204А максимальный прямой ток составляет всего 0,4А, а для 80EBU04 — целых 80А. Если средний ток окажется длительное время большим по величине, чем приведенное в документации значение, то нет гарантии что диод выживет.

Максимальный импульсный ток диода — Ifsm (единичный импульс) и Ifrm (повторяющиеся импульсы)

Максимальный импульсный ток диода — это пиковое значение тока, которое данный выпрямительный диод способен выдержать только определенное время, которое указывается в документации вместе с этим параметром. Например, диод 10А10 способен выдержать единичный импульс тока в 600А длительностью 8,3мс.

Что касается повторяющихся импульсов, то их ток должен быть таким, чтобы средний ток уложился бы в допустимый диапазон. Например, повторяющиеся прямоугольные импульсы с частотой 20кГц диод 80EBU04 выдержит даже если их максимальный ток составит 160А, однако средний ток должен оставаться не более 80А.

Средний обратный ток диода — Ir (ток утечки)

Средний обратный ток диода показывает средний за период ток через переход в обратном направлении. Обычно это значение меньше микроампера, максимум — единицы миллиампер. Для 1n4007, к примеру, средний обратный ток не превышает 5мкА при температуре перехода +25°С, и не превышает 50мкА при температуре перехода +100°С.

Среднее прямое напряжение диода — Vf (падение напряжения на переходе)

Среднее прямое напряжение диода при указанном значении среднего тока. Это то напряжение, которое оказывается приложено непосредственно к p-n-переходу диода при прохождении через него постоянного тока указанной в документации величины. Обычно не более долей, максимум — единиц вольт.

Например в документации для диода EM516 приводится прямое напряжение в 1,2В для тока в 10А, и 1,0В при токе 2А. Как видим, сопротивление диода нелинейно.

Дифференциальное сопротивление диода

Дифференциальное сопротивление диода выражает отношение приращения напряжения на p-n-переходе диода к вызвавшему это приращение небольшому приращению тока через переход. Обычно от долей Ома до десятков Ом. Его можно вычислить по графикам зависимости падения напряжения от прямого тока.

Например, для диода 80EBU04 приращение тока на 1А (от 1 до 2А) дает приращение падения напряжения на переходе в 0,08В. Следовательно дифференциальное сопротивление диода в этой области токов равно 0,08/1 = 0,08Ом.

Средняя рассеиваемая мощность диода Pd

Средняя рассеиваемая мощность диода — это средняя за период мощность, рассеиваемая корпусом диода, при протекании через него тока в прямом и обратном направлениях. Данная величина зависит от конструкции корпуса диода, и может варьироваться от сотен милливатт до десятков ватт.

Например, для диода КД203А средняя рассеиваемая корпусом мощность составляет 20 Вт, данный диод можно даже установить при необходимости на радиатор для отвода тепла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *