Мощность на валу насоса это
Перейти к содержимому

Мощность на валу насоса это

  • автор:

20. Полезная мощность. Мощность на валу насоса. Кпд.

(Вт) (кг/с)

Мощность на валу насоса(Nв)-это мощность потребляемая насосом или затрачиваемая. Nв>Nп в следствии потерь энергии.

(ВТ)

(КПД) насоса=

-объемный КПД=(отношение действительной подачи к теоретической)

Объемный КПД учитывает потери производимости при утечках жидкости через зазоры и сальники насоса, а так же в следствии неодновременного открытия клапанов на всасывающей и нагнетательной (высотах)? и выделении газов при движении жидкости в области пониженного давления.

-гидравлический КПД=(отношение удельной энергии действительной к теоретической)

-механический КПД-возникает за счет механического трения в насосе.

-КПД насосной установки.

Мощность насосной установки

B-коэффициент запаса мощности, который учитывает потери энергии на преодоление инерции покоящийся жидкости. С увеличением мощности давления, коэффициент запаса мощности уменьшается.

21.Принцип работы центробежного насоса.

Основной рабочий орган ц-б насоса – свободно вращающееся внутри спиралевидного корпуса колесо, насаженное на вал. Между дисками колеса – лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса. Внутренние поверхности дисков и поверхности лопаток образуют т.н. межлопастные каналы колеса, при работе заполненные перекачиваемой жидкостью. Всасывание и нагнетание жидкости происходит равномерно и непрерывно под действием центробежной силы, возникающей при вращении колеса.

Принцип работы:

При переходе жидкости из канала рабочего колеса в корпус происходит резкое снижение скорости, в результате чего кинетическая энергия жидкости превращается в потенциальную энергию давления, которое необходимо для подачи жидкости на заданную высоту. При этом в центре колеса создается разрежение, и вследствие этого жидкость непрерывно поступает по всасывающему трубопроводу в корпус насоса, а затем в межлопастные каналы рабочего колеса. Если перед пуском ц-б насоса всасывающий трубопровод и корпус не залиты жидкостью, то возникающего разрежения будет недостаточно для подъема жидкости в насос (из-за зазоров между колесом и корпусом). Чтобы жидкость не выливалась из насоса, на всасывающем трубопроводе устанавливают обратный клапан. Для отвода жидкости в корпусе насоса есть расширяющаяся спиралевидная камера: жидкость сначала поступает в эту камеру, а затем в нагнетательный трубопровод.

22. Движение жидкости в рабочем колесе центробежного насоса. Параллелограмм скоростей. Основные уравнения центробежного насоса.

Параллелограмм скоростей – графическое изображение относительной (W) и окружной (U) скоростей.

Построив параллелограмм скоростей, находим скорость С1на входе жидкости в рабочее колесо, направленную под углом α1, и скорость С2 на выходе из колеса, направленную под углом α2. При движении жидкости внутри рабочего колеса её абсолютная скорость увеличивается от С1 до С2.

Основное уравнение ц-б насоса устанавливает зависимость между теоретическим напором Нт, создаваемым колесом, и скоростью движения жидкости в колесе. Это уравнение называется уравнением Эйлера:

Где

На практике насосы изготавливают таким образом, чтобы α1≈90 о , т.е. cosα1= 0, это условие безударного входа жидкости в колесо. Основное уравнение принимает вид:

КПД центробежных насосов

Для насосов, у которых всасывающий и напорный патрубки имеют одинаковый диаметр и находятся на одном уровне, напор можно рассчитать по упрощённой формуле:

H = (p2 — p1) / (ρ x g) [м]

p2 — давление на напорном патрубке [Па]
p1 — давление на всасывающем патрубке [Па]

Таким образом, гидравлическая мощность насоса пропорциональна перепаду давления и расходу:

Если диаметр напорного патрубка меньше диаметра всасывающего патрубка, то для расчёта гидравлической мощности насоса напор необходимо увеличить на величину:

Рис. Увеличение напора за счёт разницы диаметров напорного и всасывающего патрубков

v2 — скорость жидкости в напорном патрубке [м/с]
v1 — скорость жидкости во всасывающем патрубке [м/с]
Q — расход [м 3 /с]
g — ускорение свободного падения [м/с 2 ]
d2 — внутренний диаметр напорного патрубка [м]
d1 — внутренний диаметр всасывающего патрубка [м]

Если напорный и всасывающий патрубок расположены не на одной линии, то напор нужно ещё увеличить на разницу высот между двумя патрубками:

Потребляемая мощность насоса

Если вал насоса жёстко соединён с валом двигателя, то потребляемая мощность насоса равна механической мощности на валу электродвигателя.

КПД насоса

КПД насоса равен отношению гидравлической мощности к потребляемой:

Насос выбирается так, чтобы в рабочей точке его КПД был максимальным (см. рис.).

Рис. КПД насоса

Механическая мощность на валу электродвигателя:

ηД — КПД электродвигателя,
PЭ — электрическая мощность, потребляемая двигателем из сети.

Электрическая мощность, потребляемая 3-х фазным электродвигателем из сети

PЭ = √3 х U х I х cos φ

U — напряжение сети [В]
I — ток, потребляемый электродвигателем [А]
cos φ — косинус угла между векторами тока и напряжения

Выводы: как вычислить КПД насоса

  • С помощью специального прибора с токовыми клещами измеряем электрическую мощность PЭ, потребляемую электродвигателем из сети. Если электродвигатель работает от преобразователя частоты, то ПЧ сам измеряет мощность и сохраняет это значение в одном из своих параметров
  • С шильдика электродвигателя списываем его КПД и вычисляем мощность на валу PВ. На шильдике, конечно, указана и номинальная мощность электродвигателя, но в данном случае нас интересует мощность электродвигателя в рабочей точке насоса
  • Если между двигателем и насосом существует жёсткая механическая связь (а не ременная передача, редуктор или муфта с проскальзыванием), то считаем потребляемую насосом мощность РП равной мощности на валу электродвигателя РВ
  • Измеряем перепад давления на напорном и всасывающем патрубках и вычисляем напор (если необходимо, то корректируем его с учётом разницы диаметров и высот напорного и всасывающего патрубков)
  • Измеряем расход и рассчитываем гидравлическую мощность насоса РГ
  • Вычисляем КПД насоса.

Если КПД насоса оказался ниже, чем вы ожидали, то стоит задуматься о профилактике, ремонте или замене насоса.

Мощность и КПД насоса

Гидравлические потери в насосе состоят из потерь на преодоление гидравлических сопротивлений в рабочем колесе и корпусе при движении потока жидкости от всасывающего патрубка к напорному. Они зависят от конструктивных особенностей насосов, размеров их проточной части, качества обработки (шероховатости) стенок и поверхностей насоса. Гидравлические потери прямо пропорциональны квадрату скорости перекачиваемой жидкости.

Механические потери обусловлены трением, имеющим место в опорах радиальных и осевых подшипников, а также в торцевом уплотнении. Также данные потери обусловлены трением рабочего колеса и ротора насоса о перекачиваемую жидкость. Механические потери также зависят от конструкции, качества изготовления и типоразмера насоса.

КПД насоса оценивает его энергетическую эффективность. Он определяется, как отношение полезной мощности к потребляемой.

Следовательно, путем к повышению КПД насоса является уменьшение потерь — гидродинамическое совершенствование проточной части, качественная обработка стенок насоса, качество торцевых уплотнений и подшипников.

КПД насоса рассчитывается по следующей формуле:

Q [м3/ч] – производительность насоса;

P2 [кВт] – мощность насоса;

367 – постоянный коэффициент;

ρ [кг/м3] – плотность воды.

Так насос постоянно приводится в действие приводом двигателя, и этот двигатель забирает мощность P1 из сети, чтобы в месте подсоединения насосной части передать мощность валу P2, то КПД двигателя рассчитывается следующим образом:

Тогда общий КПД насоса ŋtot определяется произведением КПД электродвигателя и КПД насоса:

ŋtot = ŋм • ŋp

КПД насосов различных типов и размеров могут варьироваться в очень широком диапазоне. Для насосов с мокрым ротором КПД ŋtot составляет 5–54%, причем последнее значение характерно для высокоэффективных насосов. Насосы с сухим ротором имеют больший КПД ŋtot порядка 30–80%.

Даже в пределах характеристики насоса H(Q) текущий КПД в тот или иной момент меняется от нуля до максимального значения.

Если насос работает при полностью закрытом клапане, то им создается максимальное давление, но перемещения воды нет, поэтому КПД насоса в этот момент равен нулю. Аналогичная ситуация возникает и при открытой трубе. Несмотря на большое количество перекачиваемой воды, давление не создается, поэтому КПД насоса также равен нулю.

Характеристика сети. Рабочая точка насоса

Кстати, посмотрите предыдущую статью. Там много полезной информации для вас — Характеристика сети. Рабочая точка насоса

Максимальный общий КПД циркуляционного насоса системы отопления достигается в средней части характеристики насоса H(Q). В каталогах изготовителей насосов графики характеристики насосов и зависимости КПД от подачи указаны отдельно для каждого конкретного насоса.

Насос никогда не работает при постоянной производительности. Поэтому при первичном расчете системы отопления необходимо подобрать такой насос, чтобы его рабочая точка находилась в средней трети характеристики насоса большую часть отопительного сезона. Это будет являться гарантией работы насоса при оптимальном КПД.

Мощность на валу насосов, вентиляторов и компрессоров

Мощность на валу насосов, вентиляторов и компрессоров

На основании заданной для вентилятора или насоса подачи и суммарного напора, а для компрессора — подачи и удельной работы сжатия — определяется мощность на валу, в соответствии с которой может быть осуществлен выбор мощности приводного двигателя.

Для центробежного вентилятора, например, формула определения мощности на валу выводится из выражения энергии, сообщаемой движущемуся газу в единицу времени.

Пусть F — сечение газопровода, м2; m — масса газа за секунду, кг/с; v — скорость движения газа, м/с; ρ — плотность газа, м3; ηв, ηп — кпд вентилятора и передачи.

Тогда выражение для энергии движущегося газа примет вид:

откуда мощность на валу приводного двигателя, кВт,

В формуле можно выделить группы величин, соответствующих подаче, м3/с, и напору вентилятора, Па:

Из приведенных выражений видно, что

здесь с, с1 с2 — постоянные величины.

Отметим, что вследствие наличия статического напора и конструктивных особенностей центробежных вентиляторов показатель степени в правой части может отличаться от 3.

Электропривод центробежного вентилятора

Аналогично тому, как это было сделано для вентилятора, можно определить мощность на валу центробежного насоса, кВт, которая равна:

где Q — подача насоса, м3/с;

Нг— геодезический напор, равный разности высот нагнетания и всасывания, м; Нс — суммарный напор, м; P2 — давление в резервуаре, куда перекачивается жидкость, Па; P1 — давление в резервуаре, откуда перекачивается жидкость, Па; ΔН — потеря напора в магистрали, м; зависит от сечения труб, качества их обработки, кривизны участков трубопровода и т. д.; значения ΔН приводятся в справочной литературе; ρ1 — плотность перекачиваемой жидкости, кг/м3; g = 9,81 м/с2 — ускорение свободного падения; ηн, ηп — к. п. д. насоса и передачи.

С некоторым приближением для центробежных насосов можно принять, что между мощностью на валу и скоростью существует зависимость Р = сω 3 и М = сω 2 . Практически показатели степени у скорости меняются в пределах 2,5— 6 для различных конструкций и условий работы насосов, что необходимо учитывать при выборе электропривода.

Указанные отклонения определяются для насосов наличием напора магистрали. Отметим попутно, что очень важным обстоятельством при выборе электропривода насосов, работающих на магистрали с высоким напором, является то, что они весьма чувствительны к снижению скорости двигателя.

Основной характеристикой насосов, вентиляторов и компрессоров является зависимость развиваемого напора Н от подачи этих механизмов Q. Указанные зависимости представляются обычно в виде графиков НQ для различных скоростей механизма.

На рис. 1 в качестве примера приведены характеристики (1, 2, 3, 4) центробежного насоса при различных угловых скоростях его рабочего колеса. В тех же координатных осях нанесена характеристика магистрали 6, на которую работает насос. Характеристикой магистрали называется зависимость между подачей Q и напором, необходимым для подъема жидкости на высоту, преодоления избыточного давления на выходе из нагнетательного трубопровода и гидравлических сопротивлений. Точки пересечения характеристик 1,2,3 с характеристикой 6 определяют значения напора и производительности при работе насоса на определенную магистраль при различных скоростях.

Рис. 1. Зависимость напора Н насоса от его подачи Q.

Электропривод вентиляционной установки

Пример 1. Построить характеристики Н, Q центробежного насоса для различных скоростей 0,8ωн; 0,6ωн; 0,4ωн, если характеристика 1 при ω = ωн задана (рис. 1).

1. Для одного и того же насоса

2. Построим характеристику насоса для ω = 0,8ωн.

Таким образом, можно построить вспомогательные параболы 5, 5′, 5″. которые на оси ординат при Q = 0 вырождаются в прямую, и характеристики QH для различных скоростей насоса.

Мощность двигателя поршневого компрессора может быть определена на основании индикаторной диаграммы сжатия воздуха или газа. Такая теоретическая диаграмма приведена на рис. 2. Некоторое количество газа сжимается в соответствии с диаграммой от начального объема V1 и давления P1 до конечного объема V2 и давления P2.

На сжатие газа затрачивается работа, которая будет различна в зависимости от характера процесса сжатия. Этот процесс может осуществляться по адиабатическому закону без отдачи тепла, когда индикаторная диаграмма ограничена кривой 1 на рис. 2; по изотермическому закону при постоянной температуре, соответственно кривая 2 на рис. 2, либо по политропе кривая 3, которая показана сплошной линией между адиабатой и изотермой.

Рис. 2. Индикаторная диаграмма сжатия газа.

Работа при сжатии газа для политропического процесса, Дж/кг, выражается формулой

где n — показатель политропы, определяемый уравнением pV n = const; P1 — начальное давление газа, Па; P2 — конечное давление сжатого газа, Па; V1 — начальный удельный объем газа, или объем 1 кг газа при всасывании, м3.

Мощность двигателя компрессора, кВт, определяется выражением

здесь Q — подача компрессора, м3/с; ηк — индикаторный к. п. д. компрессора, учитывающий потери мощности в нем при реальном рабочем процессе; ηп — к. п. д. механической передачи между компрессором и двигателем. Так как теоретическая индикаторная диаграмма существенно отличается от действительной, а получение последней не всегда возможно, то при определении мощности на валу компрессора, кВт, часто пользуются приближенной формулой, где исходными данными являются работа изотермического и адиабитического сжатия, а также к. п. д. компрессора, значения которых приводятся в справочной литературе.

Эта формула имеет вид:

где Q — подача компрессора, м3/с; Аи — изотермическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3; Аа — адиабатическая работа сжатия 1 м3 атмосферного воздуха до давления Р2, Дж/м3.

Зависимость между мощностью, на валу производственного механизма поршневого типа и скоростью совершенно отлична от соответствующей зависимости для механизмов с вентиляторным характером момента на валу. Если механизм поршневого типа, например насос, работает на магистраль, где поддерживается постоянный напор Н, то очевидно, что поршню при каждом ходе приходится преодолевать постоянное среднее усилие независимо от скорости вращения.

Среднее значение мощности

но так как Н = const, то

Следовательно, среднее значение момента на валу насоса поршневого типа при постоянном противодавлении не зависит от скорости:

Мощность на валу центробежного компрессора, так же как у вентилятора и насоса, с учетом сделанных ранее оговорок пропорциональна третьей степени угловой скорости.

На основании полученных формул определяется мощность на валу соответствующего механизма. Для выбора двигателя в указанные формулы следует подставить номинальные значения подачи и напора. По полученной мощности может быть выбран двигатель продолжительного режима работы.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *